Keyword: recirculation
Paper Title Other Keywords Page
MOPLR014 Construction of a Third Recirculation for the S-DALINAC* dipole, linac, operation, simulation 168
 
  • M. Arnold, T. Kürzeder, J. Pforr, N. Pietralla, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: * Work supported by DFG through CRC 634 and RTG 2128
Since 1991 the superconducting recirculating electron accelerator S-DALINAC is running at TU Darmstadt. Its designated design energy of 130 MeV wasn't reached yet due to a lower quality factor of the 3 GHz cavities and thus a higher dissipated power to the helium bath. To increase the maximum achievable energy in cw operation from approx. 85 MeV to the design value of 130 MeV the main accelerator will be passed a fourth time. In this configuration the accelerating gradients of the cavities can be lowered, so that the resulting dissipated power will match the available cooling power of the cryo plant. To realize an additional main linac pass a new recirculation beam line is needed. The most crucial points are the design of the separation dipole and its mirrored version as well as a properly calculated lattice. For the implementation of a new recirculation beam line the existing sections must be adapted to fit the new boundary conditions. This contribution will present some aspects of the design and will report on the actual status of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP106001 Energy Stability of ERLs and Recirculating Linacs linac, cavity, operation, simulation 304
 
  • R.G. Eichhorn, J. Hoke, Z. Mayle
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Energy recovery linacs can be seen as a hybrid between a linear and a circular accelerator. It has been shown in the past that an appropriate choice of the longitudinal working point can significantly improve the energy stability of a recirculating linac. In this contribution we will expand the concept of energy recovery linacs and investigate the energy spread of the beam as well as the recovery efficiency stability which can be a more demanding quantity in a high current ERL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP04 Measurements of the Beam Break-Up Threshold Current at the Recirculating Electron Accelerator S-DALINAC linac, electron, HOM, optics 751
 
  • T. Kürzeder, M. Arnold, L.E. Jürgensen, J. Pforr, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: *Supported by the German Federal Ministry for Education and Research (BMBF) under Grant No. 05K13RDA.
Linear accelerators, in particular those with a recirculating design and superconducting cavities, have to deal with the problem of Beam Break-Up (BBU). This instability can limit the maximum beam current in such accelerators. Knowing the effectiveness of prevention strategies is of great interest especially for future accelerators like energy recovery linacs (ERL) which aim for high beam currents. One option is to optimize the cavities and higher order mode couplers of those machines. In addition one may adapt the beam line lattice for further suppressing BBU. The superconducting recirculating accelerator S-DALINAC at the Technische Universität Darmstadt provides electron beams in c.w. for nuclear physics experiments since 1991. As the SRF components were never optimized for higher order mode suppression the S-DALINAC suffers from BBU at relatively low beam currents of a few μA. While those currents are sufficient for most nuclear physics experiments we can investigate BBU with respect to the beam optics. We will report on first measurements of threshold currents at different beam energies of the S-DALINAC. The results of a first test to increase the BBU limit by using skew quadrupoles will be presented.
 
slides icon Slides THOP04 [1.473 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)