Keyword: damping
Paper Title Other Keywords Page
MOPLR006 Monopole HOMs Dumping in the LCLS-II 1.3 GHz Structure HOM, cavity, linac, coupling 142
 
  • A. Lunin, T.N. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
Developing an upgrade of Linac Coherent Light Source (LCLS-II) is currently underway. The central part of LCLS-II is a continuous wave superconducting RF (CW SRF) electron linac. High order modes (HOMs) excited in SRF structures by passing beam may deteriorate beam quality and affect beam stability. In this paper we report the simulation results of monopole High Order Modes (HOM) spectrum in the 1.3 GHz accelerating structure. Optimum parameters of the HOM feedthrough are suggested for minimizing RF losses on the HOM antenna tip and for preserving an efficiency of monopole HOMs damping simultaneously.
 
poster icon Poster MOPLR006 [0.647 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP106006 Electro-Mechanical Modeling of the LCLS-II Superconducting Cavities cavity, simulation, vacuum, linac 310
 
  • O. Kononenko, C. Adolphsen, Z. Li, T.O. Raubenheimer, C.H. Rivetta
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DEAC0276SF00515
The 4 GeV LCLS-II superconducting linac will contain 280, 1.3 GHz TESLA-style cavities operated CW at 16 MV/m. Because of the low beam current, the cavity bandwidth will be fairly small, about 32 Hz, which makes the field stability sensitive to detuning from external vibrations and He pressure fluctuations. Piezo-electric actuators will be used to compensate for the detuning, which historically has been difficult at frequencies above a few Hz due to excitation of cavity mechanical resonances. To understand this interaction better, we have been doing extensive modeling of the cavities including mapping out the mechanical modes and computing their coupling to pressure changes, Lorentz forces and piezo actuator motion. One goal is to reproduce the measured detuning response of the piezo actuators up to 1 kHz, which is sensitive to how the cavities are constrained within a cryomodule. In this paper, we summarize these results and their implications for suppressing higher frequency detuning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2A04 High-Gradient RF Development and Applications klystron, linac, collider, beam-loading 368
 
  • W. Wuensch
    CERN, Geneva, Switzerland
 
  Significant progress has been made by the CLIC collaboration to understand the phenomena which limit gradient in normal-conducting accelerating structures and to increase achievable gradient in excess of 100 MV/m. Scientific and technological highlights from the CLIC high-gradient program are presented along with on-going developments and future plans. The talk will also give an overview of the range of applications that potentially benefit from high-frequency and high-gradient accelerating technology.  
slides icon Slides TU2A04 [14.317 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU2A04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR018 HOM Suppression Improvement for Mass Production of EXFEL Cavities at RI cavity, HOM, linac, coupling 879
 
  • A.A. Sulimov, J.H. Thie
    DESY, Hamburg, Germany
  • M. Pekeler, D. Trompetter
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  During cold RF tests of the European XFEL (EXFEL) cavities at DESY it was observed that the damping of the second monopole mode (TM011) showed the largest variation, which was sometimes up to 2-3 times lower than the originally allowed limit. It was concluded that this TM011-damping degradation was caused by cavity geometry deviation within the specified mechanical tolerances. The particular influence of different mechanical parameters was analyzed and additional RF measurements were carried out to find the most critical geometry parameters. Stability of the equator welding and regularity of chemical treatment were investigated for different cavity cells. In spite of the high fabrication rate during EXFEL cavity mass production the TM011 suppression was improved to an acceptable level.  
poster icon Poster THPLR018 [0.378 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)