2 Proton and Ion Accelerators and Applications
2D Room Temperature Structures
Paper Title Page
TU1A01 Review on Trends in Normal Conducting Linacs for Protons, Ions and Electrons, With Emphasis on New Technologies and Applications 336
 
  • F. Gerigk
    CERN, Geneva, Switzerland
 
  In recent years a lot of attention was given to developments in the field of superconducting cavities. While these cavities can save operating costs and shorten the length of linacs, there are many applications and circumstances where normal conducting cavities are superior. This talk reviews some of the normal conducting linacs, which have been either recently commissioned, or which are currently under construction or in the design phase. Focus will be given to the choice between normal and superconducting cavities and to emerging normal conducting technologies and their applications.  
slides icon Slides TU1A01 [16.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU1A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP06 Novel Scheme to Tune RF Cavities Using Reflected Power 757
SPWR034   use link to see paper's listing under its alternate paper code  
THPLR058   use link to see paper's listing under its alternate paper code  
 
  • R. Leewe, K. Fong, Z. Shahriari
    TRIUMF, Vancouver, Canada
  • M. Moallem
    SFU, Surrey, Canada
 
  Tuning of the natural resonance frequency of an RF cavity is essential for accelerator structures to achieve efficient beam acceleration and to reduce power requirements. Typically operational cavities are tuned using phase comparison techniques. The phase measurement is subject to temperature drifts and renders this technique labor and time intensive. To eliminate the phase measurement, reduce human oversight and speed up the start-up time for each cavity, this paper presents a control scheme that relies solely on the reflected power measurements. A sliding mode extremum seeking algorithm is used to minimize the reflected power. To avoid tuning motor abrasion, a variable gain minimizes motor movement around the optimum operating point. The system has been tested and is fully commissioned on two drift tube linear accelerator tanks in TRIUMF's ISAC I linear accelerator. Experimental results show that the resonance frequency can be tuned to its optimum operating point while the start-up time of a single cavity and the accompanied human oversight are significantly decreased.  
poster icon Poster THOP06 [0.244 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR059 Status of a 325 MHz High Gradient CH - Cavity 982
 
  • A. Almomani, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF with contract number 05P12RFRB9
The reported linac developments aim on compact ion accelerators and on an increase of the effective accelerat-ing field (voltage gain per meter). Within a funded pro-ject, a high gradient Crossbar H-type CH-cavity operat-ed at 325 MHz was developed and successfully built at IAP-Frankfurt. The effective accelerating field for this cavity is expected to reach about 13.3 MV/m at a beam energy of 12.5 AMeV, corresponding to β=0.164. The results from this cavity might influence the later energy upgrade of the Unilac at GSI Darmstadt. The aim is a compact pulsed high current ion accelerator for significantly higher energies up to 200 AMeV. Detailed investigations for two different types of copper plating (high lustre and lustre less) with respect to the high spark limit will be performed on this cavity. The 325 MHz GSI 3 MW klystron test stand is best suited for these investigations. Additionally, operating of normal conducting cavities for the case of very short RF pulses will be discussed at cryogenic temperature.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR060 Experience with the Conditioning of Linac4 RF Cavities 985
 
  • S. Papadopoulos, F. Gerigk, J.-M. Giguet, J. Hansen, J. Marques Balula, A.I. Michet, S. Ramberger, N. Thaus, R. Wegner
    CERN, Geneva, Switzerland
 
  Linac4, the future H injector of the PS complex at CERN has reached the hardware and beam commissioning phase. This paper summarizes the experience gained in RF conditioning of the DTL, CCDTL and PIMS cavities. The behaviour in conditioning of these cavities strongly depends on the cavity type and assembly conditions. Examples of conditioning history and vacuum measurements before, during and after conditioning are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)