Author: Timmins, M.A.
Paper Title Page
MOPLR048 Fabrication and Testing of a Novel S-Band Backward Travelling Wave Accelerating Structure for Proton Therapy Linacs 237
SPWR023   use link to see paper's listing under its alternate paper code  
 
  • S. Benedetti, T. Argyropoulos, C. Blanch Gutiérrez, N. Catalán Lasheras, A. Degiovanni, D. Esperante Pereira, M. Garlaschè, J. Giner Navarro, A. Grudiev, G. McMonagle, A. Solodko, M.A. Timmins, R. Wegner, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • D. Esperante Pereira
    IFIC, Valencia, Spain
 
  Compact and more affordable, facilities for proton therapy are now entering the market of commercial medical accelerators. At CERN, a joint collaboration between CLIC and TERA Foundation led to the design, fabrication and testing of a high gradient accelerating structure prototype, capable of halving the length of state-of-art light ion therapy linacs. This paper focuses on the mechanical design, fabrication and testing of a first prototype. CLIC standardized bead-pull measurement setup was used, leading to a quick and successful tuning of the prototype. The high power tests will soon start in order to prove that the structure can withstand a very high accelerating gradient while suffering no more than 10-6 breakdown per pulse per meter (bpp/m), resulting in less than one breakdown per treatment session.  
poster icon Poster MOPLR048 [2.804 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A06 High-Frequency Compact RFQs for Medical and Industrial Applications 704
 
  • M. Vretenar, V.A. Dimov, M. Garlaschè, A. Grudiev, B. Koubek, A.M. Lombardi, S.J. Mathot, D. Mazur, E. Montesinos, M.A. Timmins
    CERN, Geneva, Switzerland
 
  CERN has completed the construction of a 750 MHz RFQ reaching 5 MeV proton energy in a length of only 2 meters, to be used as injector for a compact proton therapy linac. Beyond proton therapy, this compact and lightweight design can be used for several applications, ranging from the production of radioisotopes in hospitals to ion beam analysis of industrial components or of artworks. The ex-perience with the construction of the first unit will be pre-sented together with the design and plans for other appli-cations.  
slides icon Slides TH1A06 [9.369 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP09 Tuning of the CERN 750 MHz RFQ for Medical Applications 763
THPLR055   use link to see paper's listing under its alternate paper code  
 
  • B. Koubek, Y. Cuvet, A. Grudiev, C. Rossi, M.A. Timmins
    CERN, Geneva, Switzerland
 
  CERN has built a compact 750 MHz RFQ as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The RFQ length corresponds to 5λ which is considered to be close to the limit for simple field adjustment using tuners. Nevertheless the high frequency results in a sensitive structure and requires careful tuning by means of the alignment of the pumping ports and fixed tuners. This paper gives an overview of the tuning procedure and bead pull measurements of the RFQ.  
slides icon Slides THOP09 [16.367 MB]  
poster icon Poster THOP09 [23.832 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)