# Tuning of the CERN 750 MHz RFQ for Medical Applications

LINAC 2016 East Lansing, Michigan, USA

B. Koubek, A. Grudiev, Y. Cuvet, C. Rossi, M. Timmins CERN, Geneva, Switzerland



# 750 MHz RFQ

Frequency Input Energy 40 keV **Output Energy** 5 MeV Length 2 m 0.134 m Diameter **# Modules** 4 32 # Tuners **Power Supply IOT # Power Couplers** 4 **# Pickup Antennas** 16

750 MHz 4 x 100 kW



#### **Poster THPLR055**



LINAC 2016

## Bead Pull Measurements



 $= (B_1 - B_2 + B_3 - B_4)/4 = const.$  $\boldsymbol{Q}$  $(B_1 - B_3)/2$ = 0Ds\_\_\_\_  $Dt = (B_2 - B_4)/2$ = 0

#### **Poster THPLR055**



LINAC 2016

# Tuning Algorithm



Benjamin Koubek

$$\mathbf{f} = \mathbf{M} \cdot T \qquad \mathbf{M} = \begin{bmatrix} U \cdot S \cdot V^T \\ \mathbf{M} \end{bmatrix}$$
$$= \mathbf{M}^{-1} \cdot V \qquad \mathbf{M}^{-1} = \begin{bmatrix} V \cdot S^{-1} \cdot U \end{bmatrix}$$

### Advantages using SVD

- inversion of non-square and ill-conditioned matrices
- several solutions for tuner settings
- predictions for field compensation
- matrix can be changed during iterations to calculate tuner settings
- no need to measure matrix again







# Tuning



Benjamin Koubek



| Final         | Initial        | Component |
|---------------|----------------|-----------|
| <b>±1.0</b> % | <b>±10.8</b> % | Q         |
| <b>±1.0</b> % | <b>±3.0</b> %  | Ds        |
| <b>±1.7</b> % | <b>±3.6</b> %  | Dt        |





## Summary



- RF measurements on 4-vane RFQs
- tuning of 4-vane RFQs
  - tuning algorithm / matrix inversion SVD
  - tuning procedure
- frequency tuning
- Q-values (multiple power couplers)
- antenna calibration





