Author: Shen, G.
Paper Title Page
MO1A01 The FRIB Superconducting Linac - Status and Plans 1
 
  • J. Wei, H. Ao, S. Beher, N.K. Bultman, F. Casagrande, C. Compton, L.R. Dalesio, K.D. Davidson, A. Facco, F. Feyzi, V. Ganni, A. Ganshyn, P.E. Gibson, T. Glasmacher, W. Hartung, L. Hodges, L.T. Hoff, H.-C. Hseuh, A. Hussain, M. Ikegami, S. Jones, K. Kranz, R.E. Laxdal, S.M. Lidia, G. Machicoane, F. Marti, S.J. Miller, D.G. Morris, A.C. Morton, J.A. Nolen, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, G. Pozdeyev, T. Russo, K. Saito, G. Shen, S. Stanley, H. Tatsumoto, T. Xu, Y. Yamazaki
    FRIB, East Lansing, USA
  • K. Dixon, M. Wiseman
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • H.-C. Hseuh
    BNL, Upton, Long Island, New York, USA
  • M.P. Kelly, J.A. Nolen
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  With an average beam power two orders of magnitude higher than operating heavy-ion facilities, the Facility for Rare Isotope Beams (FRIB) stands at the power frontier of the accelerator family. This report summarizes the current design and construction status as well as plans for commissioning, operations and upgrades.
Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
 
slides icon Slides MO1A01 [48.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MO1A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC011 FRIB Lattice-Model Service for Commissioning and Operation 90
 
  • D.G. Maxwell, Z.Q. He, G. Shen
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DESC0000661, the State of Michigan and Michigan State University.
Accelerator beam simulation is crucial for the successful commissioning and operation of the FRIB linear accelerator. A primary requirement of the FRIB linear accelerator is to support a broad range of particle species and change states. Beam simulations must be performed for these various accelerator configurations and it is important the results be managed to ensure consistency and reproducibility. The FRIB Lattice-Model Service has been developed to manage simulation data using a convenient web-based interface, as well as, a RESTful API to allow integration with other services. This service provides a central location to store and organize simulation data. Additional features include search, comparison and visualization. The system architecture, data model and key features are discussed.
 
poster icon Poster MOPRC011 [1.295 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC015 Development Status of FRIB On-line Model Based Beam Commissioning Application 100
 
  • Z.Q. He, M.A. Davidsaver, K. Fukushima, D.G. Maxwell, G. Shen, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: The work is supported by the U.S. National Science Foundation under Grant No. PHY-11-02511, and the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The new software FLAME has been developed to serve as physics model used for on-line beam commissioning applications. FLAME is specially designed to cover FRIB modeling challenges to balance between speed and precision. Several on-line beam commissioning applications have been prototyped based on FLAME and tested on the physics application prototyping environment. In this paper, components of the physics application prototyping environment are firstly described. Then, the design strategy and result of the four major applications: baseline generator, cavity tuning, orbit correction, transverse matching, are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2A02 FRIB Cryomodule Design and Production 673
 
  • T. Xu, H. Ao, B. Bird, N.K. Bultman, E.E. Burkhardt, F. Casagrande, C. Compton, J.L. Crisp, K.D. Davidson, K. Elliott, A. Facco, V. Ganni, A. Ganshyn, W. Hartung, M. Ikegami, P. Knudsen, S.M. Lidia, I.M. Malloch, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, S. Shanab, G. Shen, M. Shuptar, S. Stark, J. Wei, J.D. Wenstrom, M. Xu, Y. Xu, Y. Yamazaki, Z. Zheng
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • M.P. Kelly
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB), under con-struction at Michigan State University, will utilize a driver linac to accelerate stable ion beams from protons to ura-nium up to energies of >200 MeV per nucleon with a beam power of up to 400 kW. Superconducting technology is widely used in the FRIB project, including the ion sources, linac, and experiment facilities. The FRIB linac consists of 48 cryomodules containing a total of 332 superconducting radio-frequency (SRF) resonators and 69 superconducting solenoids. We report on the design and the construction of FRIB cryomodules.
 
slides icon Slides WE2A02 [3.823 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE2A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR020 Status and Progress of FRIB High Level Controls 885
 
  • G. Shen, E.T. Berryman, D. Chabot, M.A. Davidsaver, K. Fukushima, Z.Q. He, M. Ikegami, M.G. Konrad, D. Liu, D.G. Maxwell, V. Vuppala
    FRIB, East Lansing, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
FRIB, which is a new heavy ion accelerator facility to provide intense beams of rare isotopes, is currently under construction at Michigan State University. Its driver linac accelerates all stable ions up to uranium, and targets to provides a CW beam with the energy of 200 MeV/u and the beam power of 400 kW. The beam commissioning of the its Front-End has been planned to start from Middle of 2016. The high level controls for incoming commissioning is under active development and deployment. The latest status progress will be presented in this paper.
 
poster icon Poster THPLR020 [2.291 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR043 EPICS IOC Prototype of FRIB Machine Protection System 949
 
  • L. Wang, M. Ikegami, Z. Li, G. Shen, S. Zhao
    FRIB, East Lansing, USA
  • M.A. Davis
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The FRIB Machine Protection System (MPS) is designed to protect accelerator components from damage by the beam in case of operating failure. MPS includes master and slave nodes, which are controlled by MPS IOC. In this paper, we present design of MPS IOC and status of its prototyping.
 
poster icon Poster THPLR043 [0.500 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR045 Operation Mode and Machine State Control for FRIB Driver Linac Operation 956
 
  • M. Ikegami, D. Dudley, M.G. Konrad, Z. Li, G. Shen, V. Vuppala
    FRIB, East Lansing, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
FRIB is a heavy ion linac facility to accelerate all stable ions up to 200 MeV/u with the beam power of 400 kW under construction at Michigan State University. It is required for FRIB driver linac to support various modes of operation with different ion species, charge states, beam energy and so on to meet requirements from experiments. In this paper, we describe overall design of operation modes, machine states, and software to manage transitions of those mitigating the risk of machine damage in FRIB.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)