Author: Podlech, H.
Paper Title Page
TUOP05 First Experiments at the CW-Operated RFQ for Intense Proton Beams 394
SPWR014   use link to see paper's listing under its alternate paper code  
TUPLR075   use link to see paper's listing under its alternate paper code  
 
  • P.P. Schneider, D. Born, M. Droba, C. Lorey, O. Meusel, D. Noll, H. Podlech, A. Schempp, B. Thomas, C. Wagner
    IAP, Frankfurt am Main, Germany
 
  This contribution describes the first experiments with the cw-operated RFQ*, which is designed to accelerate protons from 120keV to 700keV for the FRANZ-Project**. The commissioning is done using the RF and ion beam scrubbing technique. In the first phase, the acceptance of the RFQ is scanned and the performance of the RFQ without space-charge effects is evaluated with a 2mA proton beam. The second phase will increase the beam current up to 50mA and a third phase with a machine upgrade for a beam current of up to 200mA is planned. The configuration of a high-current RFQ***, transporting beam current increasing from 2mA with no space-charge forces to a beam with high space-charge effects gives an unique insight in the beam optics of the space-charge effects. The measurements are done with a slit-grid emittance scanner for the transversal phase-space, a faraday cup for the transmitted current and a momentum spectrometer to measure the energy spread. The results set the basis for later experiments on variations of the beam current and the future coupling of the RFQ with an IH-structure****.
* Bechtold, A., et al., MOP001, LINAC08
** Meusel, O., et al., MO3A03, LINAC12
*** Vossberg, M., et al., WEPFI009, IPAC13
**** Heilmann, M., et al., THPWO017, IPAC13
 
slides icon Slides TUOP05 [2.435 MB]  
poster icon Poster TUOP05 [4.550 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR057 Advanced Design Optimizations of a Prototype for a Newly Revised 4-Rod CW RFQ for the HLI at GSI 586
SPWR011   use link to see paper's listing under its alternate paper code  
 
  • D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • P. Gerhard, L. Groening
    GSI, Darmstadt, Germany
  • O.K. Kester
    TRIUMF, Vancouver, Canada
 
  Within the scope of the FAIR project (Facility for Antiproton and Ion Research) at GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, the front end of the existing High Charge State Injector (HLI) is upgraded for cw operation. The dedicated new 4-Rod RFQ structure is currently being designed at the Institute for Applied Physics (IAP) of the Goethe University of Frankfurt. The overall design is based on the RFQ structures that were originally developed for FRANZ* and MYRRHA**. Regarding the HLI-RFQ the comparatively low operating frequency of 108 MHz causes a general susceptibility towards mechanical vibrations especially concerning the electrodes because of the necessarily larger distance between the stems. Besides RF simulations and basic thermal simulations with CST Studio Suite, the key issues like mechanical electrode oscillations as well as temperature distribution from heat loss in cw operation are investigated with simulations using ANSYS Workbench. At first instance a dedicated 6-stem prototype is currently being manufactured in order to validate the simulated RF performance, thermal behavior and structural mechanical characteristics.
*M. Heilmann et al., A Coupled RFQ-IH Cavity for the Neutron Source FRANZ, IPAC13
**C. Zhang, H. Podlech, New Reference Design of the European ADS RFQ Accelerator For MYRRHA, IPAC14
 
poster icon Poster TUPLR057 [1.484 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR029 Update on the SC 325 MHz CH-Cavity and Power Coupler Processing 913
 
  • M. Busch, M. Amberg, M. Basten, F.D. Dziuba, P.A. Mundine, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by GSI, BMBF Contr. No. 05P15RFRBA
The 325 MHz CH-Cavity which has been developed and successfully vertically tested at the Institute for Applied Physics, Frankfurt, has reached the final production stage. The helium vessel has been welded to the frontal joints of the cavity and further tests in a horizontal environment are in preparation. Furthermore the corresponding power couplers have been conditioned and tested at a dedicated test stand up to the power level of 40 kW (pulsed) for the targeted beam operation. The final step of the whole prototype development is a beam test with a 11.4 AMeV, 10 mA ion beam at GSI, Darmstadt.
 
poster icon Poster THPLR029 [1.858 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR033 R&D Status of the New Superconducting CW Heavy Ion LINAC@GSI 923
SPWR024   use link to see paper's listing under its alternate paper code  
 
  • M. Basten, M. Amberg, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  For future research in the field of Super Heavy Elements (SHE) a superconducting (sc) continuous wave (cw) ion LINAC with high intensity is highly desirable. Presently a multi-stage R&D program conducted by GSI, HIM and IAP[*] is in progress. The fundamental linac design composes a high performance ion source, a new low energy beam transport line, the High Charge State Injector (HLI) upgraded for cw, and a matching line (1.4 MeV/u) followed by the new sc-DTL LINAC for acceleration up to 7.3 MeV/u. The successful commissioning of the first Crossbar-H-mode (CH) cavity (Demonstrator), in a vertical cryo module, was a major milestone in 2015[**]. The next stage of the new sc cw heavy ion LINAC is the advanced demonstrator comprising a string of cavities and focusing elements build from several short constant-beta sc CH-cavities operated at 217MHz. Currently the first two sc 8 gap CH-cavities are under construction at Research Instruments (RI), Bergisch Gladbach, Germany. The new design without girders and with stiffening brackets at the front and end cap potentially reduces the overall technical risks during the construction phase and the pressure sensitivity of the cavity. The recent status of the construction phase as well as an outlook for further cavity development of the new cw heavy ion LINAC will be presented.
*W.Barth et al.,Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC14, THPME004
**F.Dziuba et al.,First Performance Test on the Superconducting 217 MHz CH Cavity at 4K,LINAC16, THPLR033
 
poster icon Poster THPLR033 [2.502 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR044 First Performance Test on the Superconducting 217 MHz CH Cavity at 4.2 K 953
SPWR013   use link to see paper's listing under its alternate paper code  
 
  • F.D. Dziuba, M. Amberg, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, M. Miski-Oglu
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
 
  Funding: HIM, GSI, BMBF Contr. No. 05P15RFRBA, EU Project MYRTE
At the Institute for Applied Physics (IAP) of Frankfurt University a superconducting (sc) 217 MHz Crossbar-H-mode (CH) cavity with 15 accelerating cells and a gradient of 5.5 MV/m has been designed. The cavity is the key component of the demonstrator project at GSI which is the first stage to a new sc continuous wave (cw) linac for the production of Super Heavy Element (SHE) in the future. A successful and reliable beam operation of this first prototype will be a milestone on the way to the proposed linac. After fabrication at Research Instruments (RI) GmbH, Germany, the cavity without helium vessel has been commissioned at the new cryogenic test facility of the IAP with low level rf power at 4 K. The results of this first cold test will be presented in this contribution.
 
poster icon Poster THPLR044 [4.540 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)