Keyword: beam-loading
Paper Title Other Keywords Page
MOPP040 Application Investigation of High Precision Measurement for Basic Cavity Parameters at ESS cavity, controls, operation, injection 149
 
  • R. Zeng
    ESS, Lund, Sweden
  • P. Jonsson
    Lund University, Lund, Sweden
  • W. Schappert
    Fermilab, Batavia, Illinois, USA
 
  The ESS cavity control and operation methods/algorithms are challenging due to the use of long pulse, higher beam intensity, high beam power, high gradient, uncertainties in spoke cavities and high demands for energy efficiency and availability. Suitable and effective solutions could make use of modern technologies (flexible FPGA, faster CPU, bigger memory, faster communication speed), novel measuring techniques, accurate system modeling, and advanced control concept. Those possible implementations are essential to a better understanding, and thus a better operation of ESS cavity especially SRF cavities. All these concepts rely on high precision measurement of basic cavity parameters and consequent high quality data with high resolution, high precision and completeness. This paper focuses on how high precision measurement will address the challenges at ESS on the following topics: long pulse lorentz force detuning, high precision phase and amplitude setting, heavy beam loading compensation and power overhead reduction.  
 
TUPP033 Effect of Beam-Loading on the Breakdown Rate of High Gradient Accelerating Structures klystron, experiment, linac, acceleration 499
 
  • J.L. Navarro Quirante, R. Corsini, A. Degiovanni, S. Döbert, A. Grudiev, O. Kononenko, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, F. Tecker, L. Timeo, B.J. Woolley, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O. Kononenko
    SLAC, Menlo Park, California, USA
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • X.W. Wu
    TUB, Beijing, People's Republic of China
 
  The Compact Linear Collider (CLIC) is a study for a future room temperature electron-positron collider with a maximum center-of-mass energy of 3 TeV. To efficiently achieve such high energy, the project relies on a novel two beam acceleration concept and on high-gradient accelerating structures working at 100 MV/m. In order to meet the luminosity requirements, the break-down rate in these high-field structures has to be kept below 10 per billion. Such gradients and breakdown rates have been demonstrated by high-power RF testing several 12 GHz structures. However, the presence of beam-loading modifies the field distribution for the structure, such that a higher input power is needed in order to achieve the same accelerating gradient as the unloaded case. The potential impact on the break-down rate was never measured before. In this paper we present an experiment located at the CLIC Test Facility CTF3 recently proposed in order to quantify this effect, layout and hardware status, and discuss its first results.  
slides icon Slides TUPP033 [1.970 MB]  
poster icon Poster TUPP033 [2.355 MB]  
 
TUPP096 LUE-200 Linac. Status & Development klystron, neutron, linac, electron 653
 
  • A.P. Sumbaev, A.S. Kayukov, V. Kobets, V. Minashkin, V.G. Pyataev, V.A. Shvets
    JINR, Dubna, Moscow Region, Russia
  • V. Shabratov
    JINR/VBLHEP, Moscow, Russia
  • V.N. Shvetsov
    JINR/FLNP, Moscow Region, Russia
 
  The general scheme and current status of an electron linear accelerator with an S-band travelling wave (f = 2856 MHz) accelerating structure – a driver for a pulsed neutron source (IREN) at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research - are presented. The parameters of the accelerating system and the measured parameters of the electron beam – pulse-beam current, duration of the current pulse, repetition rate, electron-energy spectrum, and loading characteristics of the accelerating structure - are given. The beginning of the implementation of the project of the second stage of the IREN facility, which forms the basis for the development of the accelerator aimed at increasing its beam power, is reported. Technical solutions underlying the modernization of the accelerator’s electrophysical systems are discussed: accelerating system, RF power supplies,and modulators.  
 
THPP028 Design and Beamloading-Simulations of a Pre-Bunching Cavity for the CLIC Drive Beam Injector cavity, simulation, coupling, electron 895
 
  • M. Dayyani Kelisani, S. Döbert, H. Shaker
    CERN, Geneva, Switzerland
  • H. Shaker
    IPM, Tehran, Iran
 
  The CLIC project is developing a multi-TeV center-of-mass electron-positron collider based on high-gradient, room-temperature accelerating structures and a novel two-beam RF power generation scheme. The RF power for the CLIC accelerating structures is provided by the so-called drive beam which is a low energy, high current electron beam. The drive beam will be generated from a high current (up to 5 A) pulsed (142μs) thermionic electron gun and then followed by a bunching system. The bunching system is composed of three sub-harmonic bunchers operating at a frequency of 499.75 MHz, a pre-buncher and a traveling wave buncher both operating at 999.5MHz. The pre-buncher cavity, which has a great importance on minimization the satellite population, should be designed with special consideration of the high beam loading effect due to the high current beam crossing the cavity. In this work we report on RF design, analytical beam loading calculations and simulations for the CLIC drive beam injector pre-buncher cavity.  
 
THPP121 Injector System for the IR-FEL at RRCAT linac, electron, FEL, cavity 1137
 
  • L. Faillace, R.B. Agustsson
    RadiaBeam, Santa Monica, California, USA
  • A. Kumar, K.K. Pant
    RRCAT, Indore (M.P.), India
 
  An infrared (IR) free-electron laser (FEL) has been proposed to be built at the Raja Ramanna Centre for Advanced Technology (RRCAT). RadiaBeam is currently involved in the design of the RRCAT FEL's injector system. The injector will deliver an electron beam with a variable energy (from 15 up to 40 MeV) and 1.5 nC at 36.6 MHz repetition rate. We show here the beam dynamics of the beam transport through the injector as well as the RF design and mechanical model of the system.
* S. Krishnagopal et al., PRELIMINARY DESIGN OF THE PROPOSED IR-FEL IN INDIA, RRCAT, Indore, M.P. 452013, India