01 Electron Accelerators and Applications
1C Synchrotron Light Sources
Paper Title Page
MOPB020 LLRF System Improvement for HLS Linac Upgrade 213
 
  • G. Huang, D. Jia, K. Jin, H. Lin, Weishi, Zhou. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Liu
    USTC, Hefei, Anhui, People's Republic of China
 
  Funding: supported by NSFC-CAS Joint Fund, contract no. 11079034
The linac beam energy will be upgraded from 200 MeV to 800 MeV, in order to realize the full-energy injection of storage ring at Hefei Light Source. This paper introduces the improvement of linac LLRF system, which is composed of phase reference and driver signal transmission and distribution, auto-phasing system, phase reversal device for SLED. the LLRF prototype has been constructed, and the test results is described in the paper.
 
 
MOPB038 Single Shot Bunch-by-Bunch Beam Emittance Measurement of the SPring-8 Linac 261
 
  • Y. Shoji, K. Takeda
    LASTI, Hyogo, Japan
 
  Bunch by bunch emittance of a single shot beam from the SPring-8 electron linac was measured. The linac is operated as an injector to the electron storage ring, NewSUBARU. A high beam stability is required for the stable top-up injection into the ring with a small acceptance. We used the electron ring as a part of the measurement system. The electron beam from the linac was injected into the ring and circulated for many turns. The beam profiles were recorded by a dual-sweep streak camera using the visible light in the ring. The fast sweep separated the bunches in 1 ns macro pulse and the slow sweep separated the profiles at different revolutions. It enabled a multi-record of beam profiles in one camera frame. Betatron oscillation in the ring produced the phase space rotation for the reconstruction of the beam emittance. The ring parameters were optimized for the measurement because the beam storage was not necessary. A stability of the linac beam was evaluated from the shot by shot fluctuation of the emittance and the bunch structure. We also compared the emittances of a front bunch and a rear bunch in the same pulse.  
 
WE1A01 ERL-Based Light Source Challenges 714
 
  • Y. Kobayashi
    KEK, Ibaraki, Japan
 
  The challenges of the design and technology for the future Energy Recovery Liancs will be reviewed: electron sources, injector, SCRF cavities and cryomodules, commissioning.  
 
WE1A05 Linac-Based Laser Compton Scattering X-Ray and Gamma-Ray Sources 734
 
  • R. Hajima
    JAEA, Ibaraki-ken, Japan
 
  Laser Compton scattering (LCS) light sources can provide high-energy photons from keV to MeV range. Many research and development projects of linac-based LCS sources are carried on. For the photon energies of tens keV, linac-based LCS sources realize laboratory-size X-ray sources, of which performance can be comparable to synchrotron light sources. Linac-based LCS also realizes unprecedented gamma-ray sources with better monochromaticity than ring-based LCS sources. This talk will review linac-based LCS source in the world.  
slides icon Slides WE1A05 [2.881 MB]