

Linac-Based Laser Compton Scattering X-ray and γ-ray Sources

Ryoichi Hajima Japan Atomic Energy Agency

XXVI Linear Accelerator Conference Sep. 12, 2012

- 1. Laser Compton Scattering Principle and Features
- 2. LCS X-ray Sources applications R&D programs
- LCS gamma-ray Sources applications R&D programs

1. Laser Compton Scattering Principle and Features

2. LCS X-ray Sources applications R&D programs

 LCS gamma-ray Sources applications R&D programs

Correlation of E_X and θ

Quasi-monochromatic LCS photon beam

Spectral Brightness: photons/s/mm²/mrad²/0.1%BW

$$B \approx F_{total} \frac{\gamma^2}{\varepsilon_n^2} \times 0.1\%$$

for the higher brightness

higher collision density
higher repetition rate
smaller emittance

Analytical evaluation of on-axis brightness

$$\hat{B}_{x} = \frac{4 \times 10^{-15}}{\pi^{2}} \frac{\gamma_{0}^{2}}{\varepsilon^{2}} \frac{N_{e} N_{\lambda}}{\Delta \tau} \frac{r_{0}^{2}}{w_{0}^{2}} \exp\left\{\frac{\chi - 1}{2\chi \Delta u_{\perp}^{2}} \left[2 + \frac{\delta \omega^{2} + \delta \gamma^{2} \chi^{2}}{2\chi (\chi - 1) \Delta u_{\perp}^{2}}\right]\right\} \left[1 - \Phi\left\{\frac{\chi - 1}{\sqrt{\delta \omega^{2} + \delta \gamma^{2} \chi^{2}}} \left[1 + \frac{\delta \omega^{2} + \delta \gamma^{2} \chi^{2}}{2\chi (\chi - 1) \Delta u_{\perp}^{2}}\right]\right\} \right] \\ \times \frac{\eta e^{1/\mu^{2}} \left[\Phi(1/\eta) - 1\right] - \mu e^{1/\mu^{2}} \left[\Phi(1/\mu) - 1\right]}{\mu^{2} - \eta^{2}},$$
(50)
calculation by using a formula in [1].
[1] F.V. Hartemann et at. Phys. Rev. ST AB 8, 100702 (2005).

Various types of LCS Sources

Advantages of Linac

in combination with modern acc. technologies

small emittance \rightarrow high spectral brightness

short electron bunch \rightarrow short pulse X-ray

free from quantum excitation

scattering of high-energy photons \rightarrow large energy spread in e-beam especially for γ -ray

Drawbacks of Linac

low repetition rate \rightarrow small flux

can be compensated by multi bunch operation or energy recovery linac

1. Laser Compton Scattering Principle and Features

2. LCS X-ray Sources applications R&D programs

 LCS gamma-ray Sources applications R&D programs

Applications of X-ray Sources

Phase Contrast Imaging

LCS X-ray Source at AIST

LCS X-ray Source at AIST

LCS X-ray Source at KEK / LUCX

Courtesy of K. Sakaue

LUCX Experimental Setup

LCS X-ray Source at KEK / LUCX

TINAE

370mm670mmdistance from the sampleto the detector

LCS X-ray Source at KEK / STF

Courtesy of J. Urakawa

electron beam	laser pulse	collision spot (µm)	X-ray flux (10% BW)
40 MeV	30 mJ /pulse	head on	1.4 x 10 ¹¹
62 pC, $\sigma_{\rm t}$ = 8.7 ps	162.5 MHz	σ_{ex} / σ_{ey} = 10 / 10	
162.5k bunch/pulse	σ_t = 4.3 ps	$\sigma_{lx} / \sigma_{ly} = 20 / 20$	
5Hz			

Supported by MEXT Quantum Beam Technology Program

For the higher flux !

multi-bunch electron beam

KEK/STF L-band RF gun with CsTe photocathode

BPM signal --- 162,500 bunch / 1ms

laser pulses from a mode-locked laser are coherently stacked in a high-finesse Fabry-Perót cavity.

LCS sources are surpassing X-ray tubes and approaching 2nd gen. SR.

- 1. Laser Compton Scattering Principle and Features
- 2. LCS X-ray Sources applications R&D programs
- LCS gamma-ray Sources applications R&D programs

C.P.J. Barty, "White Book of ELI Nuclear Physics"

LCS is unparalleled photon source above 1 MeV.

Management of nuclear material

- -- U, Pu, and Minor Actinides

LCS γ -ray for Fukushima

25

3-year R&D program funded from MEXT (2011-2013)

- ➢Installation of a LCS chamber
- ➤Generation of LCS gamma-rays
- Demo-Experiment of NRF measurement

Upgrade for U-238 measurement (Just a Plan)

Reinforcement of superconducting accelerator
 Addition of the 2nd loop

LCS γ-ray source at ELI-NP

ELI-Nuclear Physics : Complex of PW lasers and LCS at Bucharest, Romania

#PW laser stand alone

Production of Neutron-Rich Nuclei Radiation Pressure Acceleration

#LCS- γ / e⁻ stand alone

Mapping of nuclear potential landscape Deformed nuclear shape Parity violation in (e, e') process Production of medical isotopes

#PW laser + LCS- γ / e⁻

Pair creation from the vacuum Vacuum Birefringence

http://www.eli-np.ro/

LCS photon sources is evolving ^s in cooperation with advanced Laser and Acc.

LCS X-ray is approaching 2nd-gen. SR in terms of Spectral Brightness.

2nd-gen. SR in "laboratory size"

LCS γ -ray is an unparalleled source in terms of its flux, brightness, narrow bandwidth.

Innovative science and applications

2.20 2.22 Energy [MeV]