Paper | Title | Page |
---|---|---|
SUPB003 | Feasibility Study of Short Pulse Mode Operation for Multi-turn ERL Light Source | 4 |
|
||
The optics and simulation group at HZB are designing Germany’s future light source. Based on the emerging Energy Recovery Linac super conducting technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photons of Angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a wide variety of operation modes. A low emittance ~0.1 μm rad mode will operate in conjunction with a short-pulse ~10 fs mode. This paper highlights the physical limitations when trying to offer interchangeable modes and preserve beam high quality. | ||
SUPB004 | Linac Optics Design for Multi-turn ERL Light Source | 7 |
|
||
The optics simulation group at HZB is designing a multi-turn energy recovery linac-based light source. Using the superconducting Linac technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photon beams of angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a variety of operation modes. In this paper a design of transverse optic of the beam motion in the Linacs is presented. An important point in the optics design was minimization of the beta-functions in the linac at all beam passes to suppress beam break-up (BBU) instability. | ||
MOPB034 | Novel Technique of Suppressing TBBU in High-energy ERLs | 249 |
|
||
Energy recovery linacs (ERLs) is emerging generation of accelerators promising revolutionize the fields of high-energy physics and photon sciences. One potential weakness of these devices is transverse beam-breakup instability, which may severely limit available beam current. In this paper I am presenting new idea [1] developed for high-energy ERL which could be used for eRHIC, LHeC and, potentially, ILC: a concept of using main ERL linacs and natural chromaticity to suppressing TBBU instabilities by simplifying an ERL lattice. As demonstration of this method, I present tow specific example of eRHIC and LHeC ERLs.
[1] V.N. Litvinenko, Chromaticity of the lattice and beam stability in energy recovery linacs, submitted to PR ST-AB |
||
MOPB035 | The Linear Accelerating Structure Development for HLS Upgrade | 252 |
|
||
Hefei Light Source (HLS) is mainly composed of an 800 MeV electron storage ring and a 200 MeV constant-impedance Linac functioning as its injector. A new Linac is developed in view of the Full Energy Injection and the Top-up Injection scheme will be adopted in the HLS upgrade. In this paper, an 800 MeV linear accelerating system construction, the constant-gradient structure design and the symmetry couplers consideration will be described in detail. The manufacture technology, the RF measurement, the high power test results and the accelerating system operation are presented. | ||
MOPB036 | Feasibility Study of Short Pulse Mode Operation for Multi-turn ERL Light Source | 255 |
|
||
The optics and simulation group at HZB are designing Germany’s future light source. Based on the emerging Energy Recovery Linac super conducting technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photons of Angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a wide variety of operation modes. A low emittance ~0.1 μm rad mode will operate in conjunction with a short-pulse ~10 fs mode. This paper highlights the physical limitations when trying to offer interchangeable modes and preserve beam high quality. | ||
MOPB037 | Linac Optics Design for Multi-turn ERL Light Source | 258 |
|
||
The optics simulation group at HZB is designing a multi-turn energy recovery linac-based light source. Using the superconducting Linac technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photon beams of angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a variety of operation modes. In this paper a design of transverse optic of the beam motion in the Linacs is presented. An important point in the optics design was minimization of the beta-functions in the linac at all beam passes to suppress beam break-up (BBU) instability. | ||
TU2A04 | High Current ERL at BNL | 437 |
|
||
The electron hadron collider eRHIC will collide polarized and unpolarized electrons with a current of 50 mA and energy in the range of 5 GeV to 30 GeV with hadron beams, including heavy ions or polarized light ions of the RHIC storage ring. The electron beam will be generated in an energy recovery linac contained inside the RHIC tunnel, comprising six passes through two linac section of about 2.5 GeV each. The electron ERL poses many challenges in term of a high-current high-polarization electron gun, HOM damping in the linac, crab cavities, harmonic cavities and beam stability. | ||
![]() |
Slides TU2A04 [2.227 MB] | |
TH3A02 | The 12 GeV Energy Upgrade at Jefferson Laboratory | 792 |
|
||
Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. | ||
![]() |
Slides TH3A02 [3.482 MB] | |