Author: Nause, A.
Paper Title Page
TUPLB05 Computational Model Analysis for Experimental Observation of Optical Current Noise Suppression below the Shot-Noise Limit 451
 
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • A. Nause
    University of Tel Aviv, Tel Aviv, Israel
 
  Funding: We acknowledge support of the Israel Science Foundation grant
We report first demonstration of optical frequency current shot-noise suppression in a relativistic e-beam. This process is made possible by collective Coulomb interaction between the electrons of a cold intense beam during beam drift, and is essentially a process of longitudinal beam-plasma oscillation [1]. Suppression of beam current noise below the classical “shot-noise” level has been known in the microwave tubes art [2]. This is the first time that it is demonstrated in the optical regime. We predict that the scheme can be extended to the XUV and possibly to shorter wavelengths with further development of technology. The fundamental current shot-noise determines the level of incoherent spontaneous radiation emission from electron-beam optical radiation sources and SASE-FELs [3]. Suppressing shot-noise would make it possible to attain spontaneous emission sub-radiance [4] and surpass the classical coherence limits of seed-injected FELs. The effect was demonstrated by measuring sub-linear growth as a function of current of the OTR Radiation. This finding indicates that the beam charge homogenizes due to the collective interaction, and its distribution becomes sub-Poissonian.
[1] A. Gover, E. Dyunin, PRL, 102, 154801, 2009
[2] H. Haus, N. Robinson, Proc. IRE, 43, 981 (1955)
[3] P. Emma, et al , Nature Photonics 4, 641 (2010)
[4] A. Dicke, Phys. Rev. 93, 99 (1954)
 
 
TUPB005 Computational Model Analysis for Experimental Observation of Optical Current Noise Suppression Below the Shot-noise Limit 482
 
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • A. Nause
    University of Tel Aviv, Tel Aviv, Israel
 
  Funding: We acknowledge support of the Israel Science Foundation grant
We report first demonstration of optical frequency current shot-noise suppression in a relativistic e-beam. This process is made possible by collective Coulomb interaction between the electrons of a cold intense beam during beam drift, and is essentially a process of longitudinal beam-plasma oscillation.[1] Suppression of beam current noise below the classical “shot-noise” level has been known in the microwave tubes art [2]. This is the first time that it is demonstrated in the optical regime. We predict that the scheme can be extended to the XUV and possibly to shorter wavelengths with further development of technology. The fundamental current shot-noise determines the level of incoherent spontaneous radiation emission from electron-beam optical radiation sources and SASE-FELs [3]. Suppressing shot-noise would make it possible to attain spontaneous emission sub-radiance [4] and surpass the classical coherence limits of seed-injected FELs. The effect was demonstrated by measuring sub-linear growth as a function of current of the OTR Radiation. This finding indicates that the beam charge homogenizes due to the collective interaction, and its distribution becomes sub-Poissonian.
[1] A. Gover, E. Dyunin, PRL, 102, 154801, 2009
[2] H. Haus, N. Robinson, Proc. IRE, 43, 981 (1955)
[3] P. Emma, et al , Nature Photonics 4, 641 (2010)
[4] A. Dicke, Phys. Rev. 93, 99 (1954)
 
 
TH2A004 Computational Model Analysis for Experimental Observation of Optical Current Noise Suppression Below the Shot-noise Limit 783
 
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • A. Nause
    University of Tel Aviv, Tel Aviv, Israel
 
  Funding: We acknowledge support of the Israel Science Foundation grant
We report first demonstration of optical frequency current shot-noise suppression in a relativistic e-beam. This process is made possible by collective Coulomb interaction between the electrons of a cold intense beam during beam drift, and is essentially a process of longitudinal beam-plasma oscillation.[1] Suppression of beam current noise below the classical “shot-noise” level has been known in the microwave tubes art [2]. This is the first time that it is demonstrated in the optical regime. We predict that the scheme can be extended to the XUV and possibly to shorter wavelengths with further development of technology. The fundamental current shot-noise determines the level of incoherent spontaneous radiation emission from electron-beam optical radiation sources and SASE-FELs [3]. Suppressing shot-noise would make it possible to attain spontaneous emission sub-radiance [4] and surpass the classical coherence limits of seed-injected FELs. The effect was demonstrated by measuring sub-linear growth as a function of current of the OTR Radiation. This finding indicates that the beam charge homogenizes due to the collective interaction, and its distribution becomes sub-Poissonian.
[1] A. Gover, E. Dyunin, PRL, 102, 154801, 2009
[2] H. Haus, N. Robinson, Proc. IRE, 43, 981 (1955)
[3] P. Emma, et al , Nature Photonics 4, 641 (2010)
[4] A. Dicke, Phys. Rev. 93, 99 (1954)
 
 
SUPB011 Computational Model Analysis for Experimental Observation of Optical Current Noise Suppression Below the Shot-noise Limit 25
 
  • A. Nause, A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: We acknowledge support of the Israel Science Foundation grant
We report first demonstration of optical frequency current shot-noise suppression in a relativistic e-beam. This process is made possible by collective Coulomb interaction between the electrons of a cold intense beam during beam drift, and is essentially a process of longitudinal beam-plasma oscillation [1]. Suppression of beam current noise below the classical “shot-noise” level has been known in the microwave tubes art [2]. This is the first time that it is demonstrated in the optical regime. We predict that the scheme can be extended to the XUV and possibly to shorter wavelengths with further development of technology. The fundamental current shot-noise determines the level of incoherent spontaneous radiation emission from electron-beam optical radiation sources and SASE-FELs [3]. Suppressing shot-noise would make it possible to attain spontaneous emission sub-radiance [4] and surpass the classical coherence limits of seed-injected FELs. The effect was demonstrated by measuring sub-linear growth as a function of current of the OTR Radiation. This finding indicates that the beam charge homogenizes due to the collective interaction, and its distribution becomes sub-Poissonian.
[1] A. Gover, E. Dyunin, PRL, 102, 154801, 2009
[2] H. Haus, N. Robinson, Proc. IRE, 43, 981 (1955)
[3] P. Emma, et al , Nature Photonics 4, 641 (2010)
[4] A. Dicke, Phys. Rev. 93, 99 (1954)