Author: Gai, W.
Paper Title Page
MOPLB03 Advances in Beam Tests of Dielectric Based Accelerating Structures 144
 
  • A. Kanareykin, S.P. Antipov, J.E. Butler, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • W. Gai
    ANL, Argonne, USA
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: US Department of Energy
Diamond is being evaluated as a dielectric material for dielectric loaded accelerating structures. It has a very low microwave loss tangent, high thermal conductivity, and supports high RF breakdown fields. We report on progress in our recent beam tests of the diamond based accelerating structures of the Ka-band and THz frequency ranges. Wakefield breakdown test of a diamond-loaded accelerating structure has been carried out at the ANL/AWA accelerator. The high charge beam from the AWA linac (~70 nC, σz = 2.5 mm) was passed through a rectangular diamond loaded resonator and induce an intense wakefield. A groove is cut on the diamond to enhance the field. Electric fields up to 0.3 GV/m has been detected on the diamond surface to attempt to initiate breakdown. A surface analysis of the diamond has been performed before and after the beam test. Wakefield effects in a 250 GHz planar diamond accelerating structure has been observed at BNL/ATF accelerator as well. We have directly measured the mm-wave wake fields induced by subpicosecond, intense relativistic electron bunches in a diamond loaded accelerating structure via the dielectric wake-field acceleration mechanism.
 
slides icon Slides MOPLB03 [1.986 MB]  
 
MOPLB05 Applications of Compact Dielectric-Based Accelerators 150
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Important progress on the development of dielectric based accelerators has been made experimentally and theoretically in the past few years. One advantage of dielectric accelerators over the metallic counterparts is its compact size, which may attract some applications in industrial or medical accelerators. In this article, we discuss the design and technologies of dielectric based accelerators toward these needs.  
 
MOPLB11 The Upgraded Argonne Wakefield Accelerator Facility (AWA): a Test-Bed for the Development of High Gradient Accelerating Structures and Wakefield Measurements 168
 
  • M.E. Conde, D.S. Doran, W. Gai, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
Electron beam driven wakefield acceleration is a bona fide path to reach high gradient acceleration of electrons and positrons. With the goal of demonstrating the feasibility of this concept with realistic parameters, well beyond a proof-of-principle scenario, the AWA Facility is currently undergoing a major upgrade that will enable it to achieve accelerating gradients of hundreds of MV/m and energy gains on the order of 100 MeV per structure. A key aspect of the studies and experiments carried out at the AWA facility is the use of relatively short RF pulses (15 – 25 ns), which is believed to mitigate the risk of breakdown and structure damage. The upgraded facility will utilize long trains of high charge electron bunches to drive wakefields in the microwave range of frequencies (8 to 26 GHz), generating RF pulses with GW power levels.
 
slides icon Slides MOPLB11 [0.900 MB]  
 
MOPB041 Advances in Beam Tests of Dielectric Based Accelerating Structures 264
 
  • A. Kanareykin, S.P. Antipov, J.E. Butler, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • W. Gai
    ANL, Argonne, USA
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: US Department of Energy
Diamond is being evaluated as a dielectric material for dielectric loaded accelerating structures. It has a very low microwave loss tangent, high thermal conductivity, and supports high RF breakdown fields. We report on progress in our recent beam tests of the diamond based accelerating structures of the Ka-band and THz frequency ranges. Wakefield breakdown test of a diamond-loaded accelerating structure has been carried out at the ANL/AWA accelerator. The high charge beam from the AWA linac (~70 nC, σz = 2.5 mm) was passed through a rectangular diamond loaded resonator and induce an intense wakefield. A groove is cut on the diamond to enhance the field. Electric fields up to 0.3 GV/m has been detected on the diamond surface to attempt to initiate breakdown. A surface analysis of the diamond has been performed before and after the beam test. Wakefield effects in a 250 GHz planar diamond accelerating structure has been observed at BNL/ATF accelerator as well. We have directly measured the mm-wave wake fields induced by subpicosecond, intense relativistic electron bunches in a diamond loaded accelerating structure via the dielectric wake-field acceleration mechanism.
 
 
MOPB047 Applications of Compact Dielectric Based Accelerators 279
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Important progress on the development of dielectric based accelerators has been made experimentally and theoretically in the past few years. One advantage of dielectric accelerators over the metallic counterparts is its compact size, which may attract some applications in industrial or medical accelerators. In this article, we discuss the design and technologies of dielectric based accelerators toward these needs.  
 
MOPB093 The Upgraded Argonne Wakefield Accelerator Facility (AWA): a Test-Bed for the Development of High Gradient Accelerating Structures and Wakefield Measurements 392
 
  • M.E. Conde, D.S. Doran, W. Gai, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
Electron beam driven wakefield acceleration is a bona fide path to reach high gradient acceleration of electrons and positrons. With the goal of demonstrating the feasibility of this concept with realistic parameters, well beyond a proof-of-principle scenario, the AWA Facility is currently undergoing a major upgrade that will enable it to achieve accelerating gradients of hundreds of MV/m and energy gains on the order of 100 MeV per structure. A key aspect of the studies and experiments carried out at the AWA facility is the use of relatively short RF pulses (15 – 25 ns), which is believed to mitigate the risk of breakdown and structure damage. The upgraded facility will utilize long trains of high charge electron bunches to drive wakefields in the microwave range of frequencies (8 to 26 GHz), generating RF pulses with GW power levels.