Accelerators and Facilities

Exotic Beams

   
Paper Title Page
MO204 Status of REX-ISOLDE 18
 
  • O.K. Kester, S. Emhofer, D. Habs, K. Rudolph
    LMU, Garching
  • F. Ames, P. Butler, P. Delahaye, M. Lindroos, T. Sieber, F.J.C. Wenander
    CERN, Geneva
  • R. Repnow, H. Scheit, D. Schwalm, R. von Hahn
    MPI-K, Heidelberg
 
  After commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) first series of physics experiments in 2002 and 2003 have been performed. The REX-ISOLDE charge state breeder adjusts the charge-to-mass ratio of isotopes from all over the nuclear chart to the LINAC requirements. A variety of isotopes from different mass regions of the nuclear chart have been charge bred with REXEBIS to the required A/q < 4.5. A variety of tests with REXTRAP, REXEBIS and the LINAC structures have been done, in order to study the beam parameters, transmission efficiency and upgrade options. The LINAC now consists of six resonators and one re-buncher cavity. The beam energy, which can be delivered towards the target areas, can be varied between 0.8 and 2.2. An additional boost to 3 MeV/u is now possible because of the upgrade with a 202.56 MHz IH-cavity developed for the MAFF project. In addition experiment using beams from the RFQ at 0.3 MeV/u have been performed for solid state physics experiments. The present status of the projects and the commissioning measurements will be presented.  
Transparencies
TU104 Developments and Future Plans at ISAC/TRIUMF 251
 
  • P. Schmor
    TRIUMF, Vancouver
 
  The ISAC (Isotope Separator and Accelerator) at TRIUMF uses the ISOL (On Line Isotope Separator) technique with up to 100 microA of 500 MeV protons from the TRIUMF cyclotron driver to create exotic isotopes in a thick target. An ion beam formed from these exotic isotopes is transported at 2 keV/u, mass separated, injected into a room temperature RFQ Linac and then into a five-tank drift tube linac that provides variable-energy accelerated exotic-beams from 0.15 to 1.8 MeV/u for nuclear astrophysics experiments. Super conducting rf cavities are presently being added to the linac chain to permit a further increase in the maximum energy of the exotic beams to 6.5 MeV/u. An ECR-based charge state booster is also being added in front of the RFQ to increase the available mass range of the accelerated isotopes from 30 to about 150. A second proton beam line and new target station for target and ion source development have been proposed for ISAC. In the future this new target station could be used as an independent simultaneous source of exotic beams for the experimental program.  
Transparencies
TUP13 Test and First Experiments with the new REX-ISOLDE 200 MHz IH-Structure 318
 
  • T. Sieber
    CERN, Geneva
  • D. Habs, O.K. Kester
    LMU, Garching
 
  For the REX-ISOLDE accelerator, a new accelerating structure is at the moment installed and tested. It willl raise the final energy from the present 2.3 MeV/u to 3 MeV/u. The aim is to increase the mass range of the nuclei available for nuclear spectroscopy from mass 40 to mass 80. The new accelerator component is a 0.5 m IH-structure, working at the double REX frequency of 202.56 MHz. It was originally developed as a 7-Gap resonator for the MAFF* project and later adapted to the requirements at REX by changing from a 7-Gap to a 9-Gap resonator to match the lower injection energy. The poster presents the design of the resonator and the results of the rf-tests, commissioning and first operation during the 2004 running period.

*H. Bongers et al., The IH-7-Gap Resonators of the Munich Accelerator for Fission Fragments (MAFF) Linac, proceedings of the PAC2001, Chicago, June 2001, p.3945

 
WE202 Recent Results in the Field of High Intensity CW Linac Development for RIB Production 538
 
  • A. Pisent
    INFN/LNL, Legnaro, Padova
 
  High Intensity CW Linacs have been proposed as driver accelerators for RIB production in various projects, since thy can drive in steady conditions a MW power range target for the production of spallation neutrons that induce fission in a natural uranium target. Particularly important for this application, with a relatively low beam current, is the necessity to develop a superconducting intermediate energy part with good power conversion efficiency. The second specific requirement of RIB facility drivers, that is also fulfilled by a superconducting intermediate energy linac, is the necessity to keep some flexibility in the species that can be accelerated (deuterons or light ions). In EURISOL RTD project a 1 GeV 5 mA proton linac, has been proposed for this application. In SPES project, recently approved for its initial phase at LNL, a lower energy proton beam will be used on a solid target. The results of the specific R&D programs on in the field of CW RFQ and superconducting low energy linacs will be illustrated. In particular for LNL the status of the RFQ construction and the superconducting cavities prototype tests will be given.  
Transparencies