Developments & Future Plans at ISAC/TRIUMF

P. W. Schmor ISAC/TRIUMF

LINAC 2004

Tuesday, August 17, 2004

ISAC – an RIB ISOL FACILITY for Nuclear Astrophysics

- Driver
 - 500 MeV H- Cyclotron
- Target
 - Thick Target of a refractory element at an elevated temperature (2000C) which undergoes Nuclear Reactions [Spallation, Fragmentation, Fission] when Bombarded by the 500 MeV Protons
- Ion Source
 - Ionizes Target Volatiles
 - (High Radiation Environment with Impure Gas Input)
- Isotope Selector
 - Separates a Desired Isotope from Many in the Ionized Beam
- Accelerator
 - Provide Variable Energy Beams of a Selected Isotope (from Various Masses) to Experimental Stations
 - Experiments use Reverse Kinematics for Nuclear Astrophysics
 - Isotope is Projectile on H or He Target
 - Energy is Appropriate for Stellar Temperatures

SCIENCE OF RARE ISOTOPES

ISAC I & II

- **ISAC** (ISOL + ACCELERATORS)
 - ♦ ISAC-I
 - Funded in 1995
 - Low Energy
 - * $E \le 60 \text{ keV \& A}_{max} \approx 240$
 - First RIB Experiment in November 1998
 - High Energy (Accelerated)
 - * Variable Energy from 0.15 to 1.5 MeV/u for q/A \geq 1/30
 - First Beam in December 2000

ISAC II

- Funded in April 2000
- Civil Funded April 2001
 - Variable Energy from 1.5 to 6.5 MeV/u for A \leq 150
 - First Beam Scheduled for Late 2005 (4.3 MeV/u)

Completion & Upgrade Proposed for 2005-2010

TRIUMF Driver

500 MeV H- Cyclotron

Provides Simultaneous, Independent, Variable Energy, Protons to Multiple Locations

Routinely Accelerates 275 µA

Capable of 400 μ A

ISAC I

REMOTE HANDLING for ISAC TARGETS, ION SOURCES & MODULE COMPONENTS

HOT CELL AND REMOTE CRANE FOR MODULE & TARGET SERVICING

THERMAL ION SOURCE

ISAC I TARGET DEVELOPMENT

ISOL Target Area

- $\ast\,$ Shielded for 100 μA of 500 MeV Protons on Uranium
- $\ast\,$ Dec 17, 1999 100 μA on Mo Target
- \ast May 25, 2001 40 μA on Nb Target
- \ast July 23, 2001 40 μA on Ta Target
- \ast Oct 18, 2001 15 μA on SiC Target
- * Sept 9, 2002 40 μ A on TiC Target
- \ast Nov 11, 2002 45 μA on SiC Target
- * Fall 2005 Actinide Target Tests

ISAC TARGET EXPOSURE 2003

ISAC Beam Schedules 103, 104 Integral of Target Exposures

SCHEMATIC of TIME DEPENDENCE for DRIVER CURRENT with HIGH POWER, ISOL TARGET TEMP. & RELEASED YIELD

- Optimum Driver Current Pulse Lengths
 - >> Half-life, Diffusion & Effusion Times
 - >> Thermal Time Constants
 - Typically several minutes
- Driver Current Stability
 - Operating Temperature is Determined by Driver
 - Yield, Effusion, Diffusion Determined by the Driver Current
 - With Significant Beam Heating

Tmax

• $\Delta RIB/RIB > \Delta I/I$

ISAC Mass Separator

Ion Sources

• THERMAL

- Primary Ion Source on 2 target modules
- RLIS (resonant laser ion source)
 - Initial online test scheduled for Sept. 2004
 - Initial user ⁶²Ga beam planned for Dec. 2004
- ECRIS (electron cyclotron resonance ion source)
 - Online & offline Commissioning of 2.45 GHz ECR
 - Online commissioning reproduces Ne ionization efficiency measured offline on ion source test stand
 - Initial experimental run with 8π & GPS in June 2004
 - Next experimental user scheduled for November 2004
- FEBIAD
 - Offline prototype nearly ready for testing
 - Online commissioning planned for Spring 2005
 - Goal is start experimental campaign in Summer 05
- OLIS [Off Line Ion Source for Stable Beams]
 - Microwave Ion Source for volatiles & metallic sputtering
 - Surface Ion Source Installed & Commissioned
 - Installation of heavy ion ECRIS under discussion

TRILIS - hardware development -

TiSa broadband tuning

3 TiSa lasers, 2 frequency doubling units in operation beamtransport into ICB completed, off-line LIS start

NEC

ECR1 & TARGET MODULE

Drawing of the ECR with the magnetic field superimposed

ISAC EXPERIMENTAL HALL

LOW ENERGY STATIONS

ISAC-I Accelerator

OLIS

Stable beams

LEBT

- □ All-electrostatic (2 keV/u)
- □ 11.8 MHz multi-harmonic pre-buncher
- □ 35 MHz cw RFQ
 - □ E=2→153 keV/u
 - □ A/q<=30

MEBT

- Stripping foil
- □ 35 MHz rebuncher
- □ 105 MHz cw Variable Energy DTL
 - □ E=0.15-1.53 MeV/u
 - □ A/Q<=6
- HEBT
 - Diagnostic section
 - 11.8/35 MHz rebunchers

ISAC ACCELERATOR

ACCELERATOR TECHNOLOGY

COMPLETED DRIFT TUBE LINAC

C2004

Nuclear Astrophysics Experimental Stations

Beams Delivered to ISAC Experiments

ISAC II

ISAC-II Building

/\,,'n,/\ LIEIAC2●●4

ISAC II Components

- CSB [ECR based Charge State Booster]
 - Operating on Ion Source Test Stand with 1+ injection
- "S" Bend HEBT
 - 4 Dipoles in Magnet Measuring Lab
- He Liquifier
 - Ordered Compressors & liquifier system
 - Installation & Commissioning this Fall
- Cryogenic Distribution System
 - Warm system tendered
 - Cold System being Specified
- Experimental Hall HEBT
 - Concept not finalized
- Accelerator
 - First cryomodule cooled to LHe
 - Two additional cryomodules in fabrication
 - All 20 medium beta cavities fabricated

CSB Status

• CSB is producing highly charged ions on ion source test stand

- Ar7+ & 8+ observed
- Transmission losses due to background gas observed
 - Improvements to vacuum pumping planned
- ECR2 installed as 1+ injector
- Initial final optics installation scheduled for winter 2005 shutdown
- Final installation of CSB scheduled for winter 2006
- Commissioning planned for spring 2006

ISAC-II SC Linac

Section	β ₀ (%)	f _{RF} (MHz)	No.	E _a (MV/m)
Low β	4.2	70.7	8	5
Med β	5.7	106	8	6
	7.1	106	12	6
High β	10.4	141	20	6

Medium Beta Cavities

High Beta Frequency Optimization [THP14]

Medium Beta Cryomodule

Medium Beta Cryomodules Assembly

 First (3rd in dtl line) Assembled & Successfully Cold Tested with rf Power, tuners, rf control system & Solenoid [MOP86]

Medium Beta Cryomodules Alignment

 Alignment Movement During Temperature cycling Measured with Wire Position Monitoring System & Telescope [MOP89]

Medium Beta Cryomodules RF Tuning

RF Tuning Successfully Commissioned [MOP86, THP16, TUP77]

Medium Beta Cryomodules RF Coupling

• RF Coupler Successfully Commissioned [MOP92, MOP88]

LINAC, Cryomodules & Cryogenics Status

• LINAC

- First medium beta Cryomodule being Cold Tested
- Liquid Helium test confirmed heat load estimates
- Wire Position Monitor meets requirements
- Solenoid field does not impact cavity performance
- Rf frequency could be 'locked' with control system
- Cryomodules
 - #2 [1] & #3 [2] are being fabricated & assembled
- Cryogenics
 - Compressors & Liquifiers ordered
 - Commissioning scheduled for Fall 2004
 - Warm Distribution System Contract let
 - Cold Distribution System
 - Initial system will be installed in 2005

2005 - 2010

ISAC Issues

- Cyclotron Stability & Sparking requires Improvement
 - RIB production requires stable driver beam
 - Cyclotron Refurbishing Planned
- Target Development Incompatible with Production & Science Program
 - High Power Target Development Facility Required
 - Must Be Independent of Experimental Program
- OLIS [off line ion source for stable beams]
 - Initially installed for commissioning & tuning accelerators
 - Has become essential to science program
 - Needs to have a more universal ion source
- 5 Year Proposal Submitted to Canadian Federal Government
 - Endorsed by Government Appointed Peer Review
 - Decision Expected in Feb 2005

ISAC PROPOSAL FOR NEXT 5 YEAR PLAN

- OPERATE ISAC I & II
- DEVELOP NEW TARGETS, BEAMS & ION SOURCES
- COMPLETE ISAC II
 - ACHIEVE DESIGN SPECIFICATIONS
 - Medium Beta Section Completed by end of 2005
 - * 4.3 MeV/u (Initial Experiments Begin)
 - CSB Commission early in 2006
 - * Extends Mass Range for Isotopes with q/a = 1/7
 - High Beta Section Completed in late 2007
 - * 6.5 Mev/u (3 Operating Experimental Stations & Beam Lines)
 - Low Beta & DTL2 Completed in late 2009
 - * CSB only required to provide q/a = 1/30 for difficult isotopes
 - * Provides full Mass Range & Multiple Charge Acceleration
- 2nd DRIVER BEAM & TARGET STATIONS
 - INSTALL TARGET/ION SOURCE DEVELOPMENT STATION
 - ♦ PERMITS FUTURE MULTIPLE SIMULTANEOUS EXOTIC BEAMS
- MULTIPLE SEPARATOR STATION CAPABILITY
 - SEPARATED RIBs TO MULTIPLE SIMULTANEOUS EXPERIMENTS
 - ALLOW FOR FUTURE DOUBLE ACCELERATOR CHAIN

High Power Target Development

- Beam line 4 Extraction Front End Upgraded for 200 μA Operation
- New Underground Beam line to ISAC.
- ISAC Target Hall Extended to North
 - 1. High Power Target Station
 - Target Development
 - Mass Separator & Yield Station
 - 2. High Power Beam Dump
 - Used for tuning Cyclotron for High Current Operation

