Author: Wollmann, D.
Paper Title Page
MOPOPT040 Summary of the Post-Long Shutdown 2 LHC Hardware Commissioning Campaign 335
 
  • A. Apollonio, O.Ø. Andreassen, A. Antoine, T. Argyropoulos, M.C. Bastos, M. Bednarek, B. Bordini, K. Brodzinski, A. Calia, Z. Charifoulline, G.-J. Coelingh, G. D’Angelo, D. Delikaris, R. Denz, L. Fiscarelli, V. Froidbise, M.A. Galilée, J.C. Garnier, R. Gorbonosov, P. Hagen, M. Hostettler, D. Jacquet, S. Le Naour, D. Mirarchi, V. Montabonnet, B.I. Panev, T.H.B. Persson, T. Podzorny, M. Pojer, E. Ravaioli, F. Rodriguez-Mateos, A.P. Siemko, M. Solfaroli, J. Spasic, A. Stanisz, J. Steckert, R. Steerenberg, S. Sudak, H. Thiesen, E. Todesco, G. Trad, J.A. Uythoven, S. Uznanski, A.P. Verweij, J. Wenninger, G.P. Willering, D. Wollmann, S. Yammine
    CERN, Meyrin, Switzerland
  • V. Vizziello
    INFN/LASA, Segrate (MI), Italy
 
  In this contribution we provide a summary of the LHC hardware commissioning campaign following the second CERN Long Shutdown (LS2), initially targeting the nominal LHC energy of 7 TeV. A summary of the test procedures and tools used for testing the LHC superconducting circuits is given, together with statistics on the successful test execution. The paper then focuses on the experience and observations during the main dipole training campaign, describing the encountered problems, the related analysis and mitigation measures, ultimately leading to the decision to reduce the energy target to 6.8 TeV. The re-commissioning of two powering sectors, following the identified problems, is discussed in detail. The paper concludes with an outlook to the future hardware commissioning campaigns, discussing the lessons learnt and possible strategies moving forward.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT040  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS046 Reliability Analysis of the HL-LHC Energy Extraction System 747
 
  • M.R. Blaszkiewicz, A. Apollonio, T. Cartier-Michaud, B.I. Panev, M. Pojer, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The energy extraction systems for the protection of the new HL-LHC superconducting magnet circuits are based on vacuum breakers. This technology allows to significantly reduce the switch opening time and increases the overall system reliability with reduced maintenance needs. This paper presents the results of detailed reliability studies performed on these new energy extraction systems. The study quantifies the risk of a failure which prevents correct protection of a magnet circuit and identifies the most critical components of the system. For this, the model considers factors such as block or component level failure probabilities, different maintenance strategies and repair procedures. The reliability simulations have been performed with AvailSim4, a novel Monte Carlo code for availability and reliability simulations. The results are compared with the system reliability requirements and provides insights into the most critical components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS046  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS054 Data Augmentation for Breakdown Prediction in CLIC RF Cavities 1553
 
  • H.S. Bovbjerg, M. Shen, Z.H. Tan
    Aalborg University, Aalborg, Denmark
  • A. Apollonio, H.S. Bovbjerg, T. Cartier-Michaud, W.L. Millar, C. Obermair, D. Wollmann
    CERN, Meyrin, Switzerland
  • C. Obermair
    TUG, Graz, Austria
 
  One of the primary limitations on the achievable accelerating gradient in normal-conducting accelerator cavities is the occurrence of vacuum arcs, also known as RF breakdowns. A recent study on experimental data from the CLIC XBOX2 test stand at CERN proposes the use of supervised machine learning methods for predicting RF breakdowns. As RF breakdowns occur relatively infrequently during operation, the majority of the data was instead comprised of non-breakdown pulses. This phenomenon is known in the field of machine learning as class imbalance and is problematic for the training of the models. This paper proposes the use of data augmentation methods to generate synthetic data to counteract this problem. Different data augmentation methods like random transformations and pattern mixing are applied to the experimental data from the XBOX2 test stand, and their efficiency is compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS054  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS055 A Modernized Architecture for the Post Mortem System at CERN 1557
 
  • J.F. Barth, F. Bogyai, J.C. Garnier, M.L. Majewski, T. Martins Ribeiro, A. Mnich, M.P. Pocwierz, R.S. Selvek, R. Simpson, A. Stanisz, D. Wollmann, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  The control system of the accelerators at CERN stores and analyses more than 200 million dumps of high resolution data recordings every year in the Post Mortem (PM) system. A continuous increase in the complexity of the Large Hadron Collider’s (LHC) systems and the desire to collect more accurate data requires continuous improvement of the PM system. Recently, the PM system has been modernized ahead of the third operational Run of the LHC. The upgraded system implements well known data engineering principles such as horizontal scaling, stateless services and readiness for extensions. This paper recalls the purpose of the PM service and its current use cases. It presents its modernized architecture, reviews the current performance and limitations of the system, and draws perspectives for the next steps in its evolution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS055  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT013 Effect of a Spurious CLIQ Firing on the Circulating Beam in HL-LHC 1862
 
  • C. Hernalsteens, B. Lindström, E. Ravaioli, O.K. Tuormaa, M. Villén Basco, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The High Luminosity LHC (HL-LHC) will reach a nominal, levelled luminosity of §I{5e34}{\per\cm\square\per\second} and a stored energy of nearly §I{700}{MJ} in each of the two proton beams. The new large-aperture final focusing Nb3Sn quadrupole magnets in IR1 and IR5, which are essential to achieve the luminosity target, will be protected using the novel Coupling Loss Induced Quench (CLIQ) system. A spurious discharge of a CLIQ unit will impact the circulating beam through higher order multipolar field components that develop rapidly over a few turns. This paper reports on dedicated beam tracking studies performed to evaluate the criticality of this failure on the HL-LHC beam. Simulations for different machine and optics configurations show that the beam losses reach a critical level after only five machine turns following the spurious CLIQ trigger, which is much faster than assumed in previous simulations that did not consider the higher order multipolar fields. Machine protection requirements using a dedicated interlock to mitigate this failure are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT013  
About • Received ※ 08 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT014 The Effect of a Partially Depleted Halo on the Criticality and Detectability of Fast Failures in the HL-LHC 1866
 
  • C. Hernalsteens, C. Lannoy, O.K. Tuormaa, M. Villén Basco, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  In the High Luminosity LHC (HL-LHC) era, the bunch intensity will be increased to νm{2.2e11} protons, which is almost twice the nominal LHC intensity. The stored energy in each of the two beams will increase to §I{674}{MJ}. The HL-LHC will feature beams whose transverse halos are partially depleted by means of a hollow electron lens. The reduced stored energy in the beam tails will significantly change the development of losses caused by failures. This paper reports on beam tracking simulations evaluating the effect of a partially depleted halo on the criticality and detection of failures originating from the superconducting magnet protection systems. In addition, the effect of the transverse damper operating as a coherent excitation system leading to orbit excursions on a beam with a partially depleted halo is discussed. The results in terms of time-dependent beam losses are presented. The margins between the failure onset, its detection, and the time to reach critical loss levels, are discussed. The results are extrapolated to failure cases of different origins that induce similar beam loss dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT014  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT015 Study of Hydrodynamic-Tunnelling Effects Induced by High-Energy Proton Beams in Graphite 1870
 
  • C. Wiesner, F. Carra, J. Don, I. Kolthoff, A. Lechner, S.R. Rasile, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The design and assessment of machine-protection systems for existing and future high-energy accelerators comprises the study of accidental beam impact on machine elements. In case of a direct impact of a large number of high-energy particle bunches in one location, the damage range in the material is significantly increased due to an effect known as hydrodynamic tunnelling. The effect is caused by the beam-induced reduction of the material density along the beam trajectory, which allows subsequent bunches to penetrate deeper into the target. The assessment of the damage range requires the sequential coupling of an energy-deposition code, like FLUKA, and a hydrodynamic code, like Autodyn. The paper presents the simulations performed for the impact of the nominal LHC beam at 7 TeV on a graphite target. It describes the optimisation of the simulation setup and the required coupling workflow. The resulting energy deposition and the evolution of the target density are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT015  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT016 Beam-Based Reconstruction of the Shielded Quench-Heater Fields for the LHC Main Dipoles 1874
 
  • L.C. Richtmann, L. Bortot, E. Ravaioli, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  Small orbit oscillations of the circulating particle beams have been observed immediately following quenches in the LHC’s superconducting main dipole magnets. Magnetic fields generated during the discharge into the quench heaters were identified as the cause. Since the resulting, shielded field inside the beam screen cannot be measured in-situ, the time evolution of the field has to be reconstructed from the measured beam excursions. In this paper, the field-reconstruction method using rotation in normalized phase space and the optimized fitting algorithm are described. The resulting rise times and magnetic field levels are presented for quench events that occurred during regular operation as well as for dedicated beam experiments. Finally, different approaches to model the shielding behavior of the beam screen are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT016  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)