Author: Wenninger, J.
Paper Title Page
MOPOPT040 Summary of the Post-Long Shutdown 2 LHC Hardware Commissioning Campaign 335
 
  • A. Apollonio, O.Ø. Andreassen, A. Antoine, T. Argyropoulos, M.C. Bastos, M. Bednarek, B. Bordini, K. Brodzinski, A. Calia, Z. Charifoulline, G.-J. Coelingh, G. D’Angelo, D. Delikaris, R. Denz, L. Fiscarelli, V. Froidbise, M.A. Galilée, J.C. Garnier, R. Gorbonosov, P. Hagen, M. Hostettler, D. Jacquet, S. Le Naour, D. Mirarchi, V. Montabonnet, B.I. Panev, T.H.B. Persson, T. Podzorny, M. Pojer, E. Ravaioli, F. Rodriguez-Mateos, A.P. Siemko, M. Solfaroli, J. Spasic, A. Stanisz, J. Steckert, R. Steerenberg, S. Sudak, H. Thiesen, E. Todesco, G. Trad, J.A. Uythoven, S. Uznanski, A.P. Verweij, J. Wenninger, G.P. Willering, D. Wollmann, S. Yammine
    CERN, Meyrin, Switzerland
  • V. Vizziello
    INFN/LASA, Segrate (MI), Italy
 
  In this contribution we provide a summary of the LHC hardware commissioning campaign following the second CERN Long Shutdown (LS2), initially targeting the nominal LHC energy of 7 TeV. A summary of the test procedures and tools used for testing the LHC superconducting circuits is given, together with statistics on the successful test execution. The paper then focuses on the experience and observations during the main dipole training campaign, describing the encountered problems, the related analysis and mitigation measures, ultimately leading to the decision to reduce the energy target to 6.8 TeV. The re-commissioning of two powering sectors, following the identified problems, is discussed in detail. The paper concludes with an outlook to the future hardware commissioning campaigns, discussing the lessons learnt and possible strategies moving forward.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT040  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST043 A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC 953
SUSPMF100   use link to see paper's listing under its alternate paper code  
 
  • L. Coyle, F. Blanc, D. Di Croce, T. Pieloni
    EPFL, Lausanne, Switzerland
  • L. Coyle, A. Lechner, D. Mirarchi, M. Solfaroli Camillocci, J. Wenninger
    CERN, Meyrin, Switzerland
 
  Understanding and mitigating particle losses in the Large Hadron Collider (LHC) is essential for both machine safety and efficient operation. Abnormal loss distributions are telltale signs of abnormal beam behaviour or incorrect machine configuration. By leveraging the advancements made in the field of Machine Learning, a novel data-driven method of detecting anomalous loss distributions during machine operation has been developed. A neural network anomaly detection model was trained to detect Unidentified Falling Object events using stable beam, Beam Loss Monitor (BLM) data acquired during the operation of the LHC. Data-driven models, such as the one presented, could lead to significant improvements in the autonomous labelling of abnormal loss distributions, ultimately bolstering the ever ongoing effort toward improving the understanding and mitigation of these events.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST043  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT009 Operational Scenario of First High Luminosity LHC Run 1846
 
  • R. Tomás García, G. Arduini, P. Baudrenghien, R. Bruce, O.S. Brüning, X. Buffat, R. Calaga, F. Cerutti, R. De Maria, J. Dilly, I. Efthymiopoulos, M. Giovannozzi, P.D. Hermes, G. Iadarola, O.R. Jones, S. Kostoglou, E.H. Maclean, N. Mounet, E. Métral, Y. Papaphilippou, S. Redaelli, G. Sterbini, H. Timko, F.F. Van der Veken, J. Wenninger, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  A new scenario for the first operational run of the HL-LHC era (Run 4) has been recently developed to accommodate a period of performance ramp-up to achieve an annual integrated luminosity close to the nominal HL-LHC design. The operational scenario in terms of beam parameters and machine settings, as well as the different phases, are described here along with the impact of potential delays on key hardware components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT009  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)