Author: Syresin, E.
Paper Title Page
WEPOPT001 NICA Ion Collider and Plans of Its First Operations 1819
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, A.R. Galimov, E.V. Gorbachev, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, V.A. Lebedev, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) is under assembling in JINR. The NICA goals are providing of colliding beams for studies of hot and dense strongly interacting baryonic matter and spin physics. The heavy ion injection complex of Collider NICA consisting from following accelerators: new acting heavy ion linac HILAC with RFQ and IH DTL sections at energy 3.2 MeV/u, new acting superconducting Booster synchrotron at energy up 600 MeV/u, acting superconducting synchrotron Nuclotron at gold ion energy 3.9 GeV/n, will starts operation with first ion beams in beginning of 2022. The assembling of two Collider storage rings with two interaction points was done in December 2021. The status of acceleration complex NICA and plans of its first operation is under discussion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT001  
About • Received ※ 30 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT002 Conception of High Intensive Polarized Proton Beam Formation in NICA Collider 1822
 
  • E. Syresin, A.V. Butenko, S.A. Kostromin, O.S. Kozlov, I.N. Meshkov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • S.D. Kolokolchikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
  • N.V. Mityanina
    BINP SB RAS, Novosibirsk, Russia
  • P.R. Zenkevich
    ITEP, Moscow, Russia
 
  NICA (Nuclotron-based Ion Collider fAcility) is a new accelerator complex being assembled at JINR to search for the mixed phase of baryonic matter and to investigate the nature of nucleon/particle spin. The polarized proton beams will be operated at the energy range of 5-12.6 GeV, the beam intensity in each ring of 2.2x1013 and the luminosity of 1x1032 cm-2 s-1. The conception of formation of high intensive proton beams is discussed for two different schemes. In first scheme the protons are injected from Nuclotron to Collider at an energy of 2-2.5 GeV to provide the cooling and the storage at this energy and then they are accelerated up to energy of experiments. In the second scheme the cooling of protons is realized in one from accelerators of the injection chain and the protons are injected from Nuclotron to Collider at energy of experiments, where they are stored up required intensity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT002  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 12 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT004 Acceleration and Crossing of Transition Energy Investigation Using an RF Structure of the Barrier Bucket Type in the NICA Accelerator Complex 1829
 
  • S.D. Kolokolchikov, A.A. Melnikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  The dynamic of longitudinal motion in Barrier Bucket RF structure is considered. To preserve the stability of the proton beam during the acceleration to the experiment energy it is necessary to cross the transition energy and a rapid jump of transition energy is possible. The influence of the second-order slip factor is taking into account, as well as the space charge effect. The dynamic aperture is investigated for various gradients of focusing quadrupoles and corresponding working points which is necessary for transition crossing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT004  
About • Received ※ 16 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT006 Investigation of Spin-Decoherence in the NICA Storage Ring for the Future EDM-Measurement Experiment 1835
 
  • A.E. Aksentyev, A.A. Melnikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • V. Ladygin, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: We acknowledge support by the joint Deutsche ForschungsGemeinschaft (DFG) and Russian Science Foundation (RSF) grant 22-42-04419
A new experiment to measure electric dipole moments (EDMs) of elementary particles, based on the Frequency Domain method, has been proposed for implementation at the NICA facility (JINR, Russia). EDM experiments in general, being measurement-of-polarization experiments, require long spin-coherence times at around 1,000 seconds. The FD method involves a further complication (well paid off in orders of precision) of switching the polarity of the guiding field as part of its CW-CCW injection procedure. This latter procedure necessitates a calibration process, during which the beam polarization axis changes its orientation from the radial (used for the measurement) to the vertical (used for the calibration) direction. If this change occurs adiabatically, the beam particles’ spin-vectors follow the direction of the polarization axis, which undermines the calibration technique; however, concerns were raised as to whether violation of adiabaticity could damage spin-coherence.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT006  
About • Received ※ 16 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK019 Collider NICA Power Supply Magnet System 2806
 
  • V. Karpinsky, R.M. Ahmadrizyalov, S.A. Arefev, A.V. Butenko, A.V. Karavaev, S.V. Kirov, A.V. Kopchenov, A.A. Kozlykovskaya, T.A. Kulaeva, A.L. Osipenkov, A.V. Sergeev, A.A. Shurygin, E. Syresin, V.G. Tovstuha, N.V. Travin
    JINR, Dubna, Moscow Region, Russia
  • M.I. Kuznetsov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  A power supply system for Collider structural magnets is considered, which consists of precision current sources, energy evacuation devices for superconducting elements, additional sources, and control and monitoring equipment. The status of the equipment and the plan of its placement in Collider bld. 17 are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK019  
About • Received ※ 02 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS054 Beam Lines and Stations for Applied Research Based on Ion Beams Extracted from Nuclotron 3096
 
  • G.A. Filatov, A. Agapov, A.A. Baldin, A.V. Butenko, A.R. Galimov, S.Yu. Kolesnikov, K.N. Shipulin, A. Slivin, E. Syresin, G.N. Timoshenko, A. Tuzikov, A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • S. Antoine, W. Beeckman, X.G. Duveau, J. Guerra-Phillips, P.J. Jehanno
    SIGMAPHI S.A., Vannes, France
  • D.V. Bobrovskiy, A.I. Chumakov
    MEPhI, Moscow, Russia
  • P.N. Chernykh, S. Osipov, E. Serenkov
    Ostec Enterprise Ltd, Moscow, Russia
  • D.G. Firsov, A.S. Kubankin, Yu.S. Kubankin
    LLC "Vacuum systems and technologies", Belgorod, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • T. Kulevoy
    NRC, Moscow, Russia
  • Y.E. Titarenko
    ITEP, Moscow, Russia
 
  New beamlines and irradiation stations of the Nuclotron-based Ion Collider fAcility (NICA) are currently under construction at JINR. These facilities for applied research will provide testing on capsulated microchips (ion energy range of 150-500 MeV/n) at the Irradiation Setup for Components of Radioelectronic Apparatus (ISCRA) and space radiobiological research (ion energy range 400-1100 MeV/n) at the Setup for Investigation of Medical Biological Objects (SIMBO). In this note, the technical details of SIMBO and ISCRA stations and their beamlines are described and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS054  
About • Received ※ 20 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS055 Commissioning of the SOCHI Applied Station Beam and Beam Transfer Line at the NICA Accelerator Complex 3099
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, D.E. Donets, G.A. Filatov, A.R. Galimov, K.N. Shipulin, E. Syresin, A. Tuzikov, V.I. Tyulkin
    JINR, Dubna, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    LPI, Moscow, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
  • A.M. Tikhomirov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The SOCHI (Station of CHip Irradiation) station was constructed at the NICA accelerator complex for single event effect testing of decapsulated microchips with low-energy ion beams (3.2 MeV/n). The peculiarity of microchip radiation tests in SOCHI is connected with the pulse beam operation of the heavy ion linear accelerator (HILAc) and a restriction on the pulse dose on the target. The SOCHI station construction, the equipment and the results of the first beam runs are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS055  
About • Received ※ 26 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK024 Quasi-Frozen Spin Concept of Magneto-Optical Structure of NICA Adapted to Study the Electric Dipole Moment of the Deuteron and to Search for the Axion 492
 
  • Y. Senichev, A.E. Aksentyev, S.D. Kolokolchikov, A.A. Melnikov
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • V. Ladygin, E. Syresin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • N. Nikolaev
    Landau ITP, Chernogolovka, Russia
 
  Funding: We acknowledge a support by the joint Deutsche ForschungsGemeinschaft (DFG) and Russian Science Foundation (RSF) grant 22-42-04419
The "frozen spin" method is based on the fact that at a certain parameters of the ring, the particle spin rotates with the frequency of the momentum, creating conditions for the continuous growth of the electric dipole moment signal. Since a straightforward implementation of the frozen spin regime at NICA is not possible, we suggest an alternative quasi-frozen spin approach concept. In this new regime, the spin oscillates about particle orbit with the spin phase advance pi*gamma*G/2, locally recovering the longitudinal orientation at the location of the electric-magnetic Wien filters in the straight sections. In the case of deuterons, thanks to the small magnetic anomaly G, the spin continuously oscillates relative to the direction of the momentum with a small amplitude of a few degrees and the expected EDM effect is reduced only by a few percent. In this paper, we study the spin-orbital motion with the aim of using the NICA collider to measure the EDM. We also comment on the potential of NICA as an axion antenna in both the quasi-frozen spin regime and beyond.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK024  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT003 Challenges of Low Energy Hadron Colliders 1825
 
  • G.V. Trubnikov, V.A. Lebedev
    JINR, Dubna, Russia
  • A.V. Butenko, S.A. Kostromin, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, E. Syresin, A. Tuzikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  NICA collider complex is under construction at JINR. The initial configuration of the collider will perform collisions of fully stripped heavy ions, 209 Bi and others, for a study of phase transition in the quark-gluon plasma in the energy range 1/4.5 GeV/u per beam. Commissioning of the collider injection chain has been recently started. The complex includes 2 linacs, 2 Booster synchrotrons (Booster and Nuclotron to support the beam injection to the collider), and 2 collider rings of 503 m circumference. The design luminosity is ~1027 1/(cm*s) at 4.5 GeV/u. The heavy ions are generated in the ESIS-type ion source with intensity ~10 9 /pulse. Then they are accelerated into the linac and Booster and directed to stripping target. Next, fully stripped ions are accelerated in the Nuclotron and injected into Collider. The electron and stochastic cooling are used in each of the collider rings to support beam accumulation and to prevent the emittance growth due to intrabeam scattering. Three RF systems are used for longitudinal phase space manipulations. An achievement of design luminosity requires overcoming many technological and beam physics problems which are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT003  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT005 Investigation of Polarized Proton Spin Coherence Time at Storage Rings 1832
SUSPMF004   use link to see paper's listing under its alternate paper code  
 
  • A.A. Melnikov, A.E. Aksentyev, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • E. Syresin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Funding: We appreciate a support of this study by the Russian Science Foundation grant 22-42-04419 and the ERC Advanced Grant of the European Union (proposal number 694340).
The idea of the Electric Dipole Moment (EDM) search using the storage ring with polarized beam demands long Spin Coherence Time (SCT). It is the time during which the RMS spread of the orientation of spins of all particles in the bunch reaches one radian. Long SCT is needed to observe a coherent effect on polarization induced by the EDM. The possibility of getting a 1000 s SCT for deuterons has been shown experimentally at COoler SYnchrotron (COSY), accelerator at FZJ Jülich, Germany. Reaching high values of SCT for protons is more challenging due to a higher anomalous magnetic moment. Obtaining sufficient proton SCT is obligatory for planned EDM search experiments at COSY and the ProtoType EDM Ring (PTR). It has been shown that the second order momentum compaction factor (alpha1) has to be optimized along with chromaticities to get high SCT. Three families of sextupoles have to be used. The optimal values of chromaticities and alpha1 are discussed. The racetrack option of PTR is investigated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT005  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)