Author: Ptitsyn, V.
Paper Title Page
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In addition to the day-one primary Interaction Region (IR), the design of the Electron Ion Collider (EIC) must support operation of a 2nd IR potentially added later. The 2nd IR is envisioned in an existing experimental hall at RHIC IP8, compatible with the same beam energy combinations as the 1st IR over the full center of mass energy range of ~20 GeV to ~140 GeV. The 2nd IR is designed to be complementary to the 1st IR. In particular, a secondary focus is added in the forward ion direction of the 2nd IR hadron beamline to optimize its capability in detecting particles with magnetic rigidities close to those of the ion beam. We provide the current design status of the 2nd IR in terms of parameters, magnet layout and beam dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK060 An Induction-Type Septum Magnet for the EIC Complex 603
 
  • N. Tsoupas, D. Holmes, C. Liu, I. Marneris, C. Montag, V. Ptitsyn, V.H. Ranjbar, J.E. Tuozzolo
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The electron Ion Collider (eIC) project* has been approved by the Department of Energy to be built at the site of Brookhaven National Laboratory (BNL). Part of the eIC accelerator complex and more specifically the Rapid Cycling Syncrotron (RCS) which accelerates the electron beam up to 18 GeV and the electron Storage Ring (eSR) which stores the electron beam bunces for collisions with the hadrons, will be built inside the tunnel of the Relativistic Heavy Ion Collider (RHIC)**. This paper provides information on the electromagnetic design of the septa magnets which will be employed to inject and extract the beam to and from the two synchrotrons used for the acceleration and storage of the electron beam bunches. The type of the septum is of induction type made o laminated iron and it is similar to the one described in ref.[3] The electromagnetic study is performed by the use of the transient module of the OPERA computer code***.
* https://ww.bnl.gov/eic/
** A. Zhuravlev, et al. PIPAC2013, Shanghai, China
*** https://www.3ds.com/products-services/simulia/products/opera/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK060  
About • Received ※ 05 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIXGD1 EIC Beam Dynamics Challenges 1576
 
  • D. Xu, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, W.F. Bergan, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, C. Montag, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, Y. Luo, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost.  
slides icon Slides WEIXGD1 [3.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST020 EIC Hadron Spin Rotators 1734
 
  • V. Ptitsyn, J.S. Berg
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron-Ion Collider in BNL will collide polarized electrons with polarized protons or polarized 3He ions. Spin rotators will be used to create the longitudinal beam polarization at a location of the EIC experimental detector. Helical spin rotators utilized for polarized proton operation in present RHIC will be reused in the EIC Hadron Storage Ring. However, due to a significant difference of EIC and RHIC interaction region layouts, the EIC spin rotator arrangement has several challenges. Turning on the EIC spin rotators may lead to a significant spin tune shift. To prevent beam depolarization during the spin rotator turn-on, Siberian Snakes have to be tuned simultaneously with rotators. The EIC spin rotators must be able to operate in a wide energy range for polarized protons and polarized 3He ions. The paper presents the challenges of spin rotator usage in the EIC and remedies assuring the successful operation with the rotators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST020  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST031 RHIC Polarized Proton Operation in Run 22 1765
 
  • V. Schoefer, E.C. Aschenauer, D. Bruno, K.A. Drees, W. Fischer, C.J. Gardner, K. Hock, H. Huang, R.L. Hulsart, C. Liu, Y. Luo, I. Marneris, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, J. Sandberg, W.B. Schmidke, F. Severino, T.C. Shrey, P. Thieberger, J.E. Tuozzolo, M. Valette, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno
    BNL, Upton, New York, USA
 
  The Relativistic Heavy Ion Collider (RHIC) Run 22 physics program consisted of collisions with vertically po- larized proton beams at a single collision point (the STAR detector). During initial startup of the collider, power out- ages damaged two of the coils in one of the RHIC helical dipole snake magnets used for polarization preservation in the Blue ring. That snake was reconfigured for use as a partial snake. We will outline some of the remediating mea- sures taken to maximize polarization transmission in this configuration. These measures included changing the col- liding beam energy from 255 GeV to 254.2 GeV to adjust the spin closed orbit at store and adjustment of the field in the other helical dipole in the Blue ring to improve injection spin matching. Later in the run, the primary motor gener- ator for the AGS (the injector to RHIC) failed and a lower voltage backup had to be used, resulting in a period of lower polarization. Other efforts include detailed measurement of the stable spin direction at store and the commissioning of a machine protection relay system to prevent spurious firing of the RHIC abort kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST031  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT019 RHIC Blue Snake Blues 1881
 
  • F. Méot, E.C. Aschenauer, H. Huang, A. Marusic, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two helical full snakes are used in both Blue and Yellow rings of RHIC collider, in order to preserve beam polarization during acceleration to collision energy and polarization lifetime at store. A snake in RHIC is comprised of four 2.4m long modules, powered by pair. During the startup of RHIC Run 22 in December 2021, two successive power dips have caused the 9 o’clock RHIC BlBrookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.ue ring snake to loose two of its four modules. In spite of this regrettable loss, it has been possible to maintain near 180deg snake precession, by proper powering of the remaining two modules, as well as, by re-tuning the 3 o’clock sister snake, vertical spin precession axis around the ring and spin tune 1/2. Determining these new settings, in order to salvage polarization with the handicapped Blue snake pair, has required series of numerical simulations, a brief overview is given here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT019  
About • Received ※ 03 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) will be built in the existing Relativistic Heavy Ion Collider (RHIC) tunnel with the addition of electron acceleration and storage rings. The two RHIC rings will be reconfigured as a single Hadron Storage Ring (HSR) for accelerating and storing ion beams. The proton beam energy will be raised from 255 to 275 GeV to achieve the desired center-of-mass energy range: 20’140 GeV. It is also mandatory to operate the HSR with a constant revolution frequency over a large energy range (41’275 GeV for protons) to synchronize with the Electron Storage Ring (ESR). These and other requirements/challenges dictate modifications to RHIC accelerators. This report gives an overview of the modifications to the RHIC straight sections together with their individual challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT035 Optics for Strong Hadron Cooling in EIC HSR-IR2 1920
 
  • S. Peggs, W.F. Bergan, D. Bruno, Y. Gao, D. Holmes, R.F. Lambiase, C. Liu, H. Lovelace III, G.J. Mahler, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, E. Wang, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • S.V. Benson, T.J. Michalski
    JLab, Newport News, Virginia, USA
  • F. Micolon
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC001 2704, and by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
Insertion Region 2 (IR2) of the Relativistic Heavy Ion Collider will be modified to accommodate a Strong Hadron Cooling facility in the Hadron Storage Ring (HSR) of the Electron-Ion Collider (EIC). This paper describes the current proof-of-principle design of HSR-IR2 - layout, optical performance, design methodology, and engineering requirements. It also describes the challenges and opportunities in the future development of the HSR-IR2 design, in order to further optimize Strong Hadron Cooling performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT035  
About • Received ※ 02 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT036 Dependence of Beam Size Growth on Macro-Particle’s Initial Actions in Strong-Strong Beam-Beam Simulation for the Electron-Ion Collider 1924
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with design luminosities up to 1×1034cm-2s-1 in the center mass energy range of 20-140 GeV. We simulated the planned electron-proton collision of flat beams with Particle-In-Cell (PIC) based Poisson solver in strong-strong beam-beam simulation. We observed a much larger proton emittance growth rate than that from weak-strong simulation. To understand the numerical noises further, we calculate the beam size growth rate of macro-particles as function of their initial longitudinal and transverse actions. This method is applied to both strong-strong and weak-strong simulations. The purpose of this study is to identify which group of macro-particles contributes most of the artificial emittance growth in strong-strong beam-beam simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT036  
About • Received ※ 22 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT037 Dynamic Aperture Evaluation for EIC Hadron Storage Ring with Crab Cavities and IR Nonlinear Magnetic Field Errors 1927
 
  • Y. Luo, J.S. Berg, W. Fischer, X. Gu, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, H. Witte, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The electron ion collider (EIC) presently under construction at Brookhaven National Laboratory will collider polarized high energy electron beams with hadron beams with luminosities up to 1034 cm-2s-1 in the center mass energy range of 20-140 GeV. In this article, we evaluate the dynamic aperture of the Hadron Storage Ring (HSR) with symplectic element-by-element tracking. Crab cavities, nonlinear magnetic field errors, and weak-strong beam-beam interaction are included. We compared the dynamic aperture from head-on collision to crossing-angle collision and found the reason for the dynamic aperture drop. We also studied the field error tolerances for IR magnets and for some particular magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT037  
About • Received ※ 22 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT038 Summary of Numerical Noise Studies for Electron-Ion Collider Strong-Strong Beam-Beam Simulation 1931
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Electron-Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams, reaching luminosities up to 1×1034cm-2s-1 in center mass energy range of 20-140 GeV. We studied the planned electron-proton collisions using a Particle-In-Cell (PIC) based Poisson solver in strong-strong beam-beam simulation. We observed a much larger proton emittance growth rate than in weak-strong simulation. To understand the numerical noise and its impact on strong-strong simulation results, we carried out extensive studies to identify all possible causes for artificial emittance growth and quantify their contributions. In this article, we summarize our study activities and findings. This work will help us better understand the simulated emittance growth and the limits of the PIC based strong-strong beam-beam simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT038  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT040 Numerical Noise Error of Particle-In-Cell Poisson Solver for a Flat Gaussian Bunch 1939
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collider polarized high energy electron beams with hadron beams with luminosity up to 1×1034cm-2s-1 in the center mass energy range of 20-140 GeV. We simulated the planned electron-proton collision of flat beams with Particle-In-Cell (PIC) based Poisson solver in strong-strong beam-beam simulation. We observed a much larger proton emittance growth rate than that from weak-strong simulation. To better understand the emittance growth rate from the strong-strong simulation, we compare the beam-beam kicks between the PIC method and the analytical calculation and calculate the RMS variation in beam-beam kicks among 1000 sets of random Gaussian particle distributions. The impacts of macro-particle number, grid number, and bunch flatness are also studied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT040  
About • Received ※ 23 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) will collide electrons with hadrons at center-of-mass energies up to 140 GeV (in the case of electron-proton collisions). A 3.8-kilometer electron storage ring is being designed, which will store electrons with a range of energies up to 18 GeV for collisions at one or two interaction points. At energies up to 10 GeV the arcs will be tuned to provide 60 degree phase advance per cell in both planes, whereas at top energy of 18 GeV a 90 degree phase advance per cell will be used, which largely compensates for the horizontal emittance increase with energy. The optics must be matched at three separate energies, and the different phase-advance requirements in both the arc cells and the straight sections make this challenging. Moreover, the spin rotators must fulfill requirements for polarization and spin matching at widely different energies while satisfying technical constraints. In this paper these challenges and proposed solutions are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT047 Beam Optics of the Injection/Extraction and Beam Transfer in the Electron Rings of the EIC Project 1964
 
  • N. Tsoupas, D. Holmes, C. Liu, C. Montag, V. Ptitsyn, V.H. Ranjbar, J. Skaritka, J.E. Tuozzolo, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) project* has been approved by the Department of Energy to be built at the site of Brookhaven National Laboratory (BNL). The goal of the project is the collision of energetic (of many GeV/amu) ion species with electron bunches of energies up to 18 GeV. The EIC includes two electron rings, the Rapid Cycling Synchrotron (RCS) which accelerates the electron beam up to 18 GeV, and the Electron Storage Ring (ESR) which stores the electron beam for collisions with hadron beam, both to be installed in the same tunnel as the Hadron Storage Ring (HSR). This paper discusses the layout and the beam optics of the injection/extraction beam lines the electron rings and the beam optics of the transfer line from the RCS to the ESR ring.
* https://www.bnl.gov/eic/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT047  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK014 Hadron Storage Ring 4 O’clock Injection Design and Optics for the Electron-Ion Collider 2068
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  The Hadron Storage Ring (HSR) of the Electron-Ion Collider (EIC) will accelerate protons and heavy ions up to a proton energy of 275 GeV and an Au+79 110 GeV/u to collide with electrons of energies up to 18 GeV. To accomplish the acceleration process, the hadrons are pre-accelerated in the Alternating Gradient Synchrotron (AGS), extracted, and transferred to HSR for injection. The planned area for injection is the current Relativistic Heavy Ion Collider (RHIC) 4 o’clock straight section. To inject hadrons, a series of modifications must be made to the existing RHIC 4 o’clock straight section to accommodate for the 20 new ~18 ns injection kickers and a new injection septum, while providing sufficient space and proper beam conditions for polarimetry equipment. These modifications will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK014  
About • Received ※ 02 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK015 The Electron-Ion Collider Hadron Storage Ring 10 O’clock Switchyard Design 2071
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will be composed of the current Relativistic Heavy Ion Collider (RHIC) yellow ring sextants with the exception of the 1 o’clock and the 11 o’clock arc. These two arcs use the existing blue ring inner (1 o’clock) and outer (11 o’clock) magnetic lattice for 275 GeV proton operation. The inner yellow 11 o’clock arc is used for 41 GeV energy operation. A switching magnet must be used to guide the hadron beam from the low and high energy arc respectively into the shared arc. This report provides the necessary lattice configuration, magnetic fields, and optics for the 10 o’clock utility straight section (USS) switchyard for both high and low energy configuration while providing the necessary space allocations and beam specifications for accelerator systems such as an additional radiofrequency cavity and beam dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK015  
About • Received ※ 01 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)