Author: Kim, S.H.
Paper Title Page
MOPOST021 ReAccelerator Upgrade, Commissioning and First Experiments at the National Superconducting Cyclotron Laboratory (NSCL) / Facility for Rare Isotope Beams (FRIB) 101
 
  • A.C.C. Villari, G. Bollen, K.D. Davidson, K. Fukushima, A.I. Henriques, K. Holland, S.H. Kim, A. Lapierre, T. Maruta, D.G. Morris, S. Nash, P.N. Ostroumov, A.S. Plastun, J. Priller, B.M. Sherrill, R. Walker, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • B. Arend, D.B. Crisp, D.J. Morrissey, M. Steiner
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the NSF under grant PHY15-65546 and DOE-SC under award number DE-SC0000661
The reaccelerator ReA is a state-of-the-art super-conducting linac for reaccelerating rare isotope beams produced via inflight fragmentation or fission and subse-quent beam stopping. ReA was subject of an upgrade that increased its final beam energy from 3 MeV/u to 6 MeV/u for ions with charge over mass equal to 1/4. The upgrade included a new room-temperature rebuncher after the first section of acceleration, a new β = 0.085 QWR cryomodule and two new beamlines in a new ex-perimental vault. During commissioning, beams were accelerated with near 100 percent transport efficiency through the linac and delivered through beam transport lines. Measured beam characteristics match those calcu-lated. Following commissioning, stable and long living rare isotope beams from a Batch Mode Ion Source (BMIS) were accelerated and delivered to experiments. This con-tribution will briefly describe the upgrade, and results from beam commissioning and beam delivery for experi-ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST021  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST022 Upgrade of the Radio Frequency Quadrupole of the ReAccelerator at NSCL/FRIB 104
 
  • A.S. Plastun, J. Brandon, A.I. Henriques, S.H. Kim, D.G. Morris, S. Nash, P.N. Ostroumov, A.C.C. Villari, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.B. Crisp, D.P. Sanderson
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the National Science Foundation under grant PHY15-65546
The ReA-RFQ is a four-rod room-temperature structure aimed to be the first step acceleration of rare isotopes as well as stable beams before injection into the ReA SRF linac. The beams of charge to mass ratios of 1/5 to 1/2 from the Electron Beam Ion Trap at 12 keV/u should be accelerated to at least 500 keV/u to be efficiently accelerated in the main SRF linac. Since the commissioning of the original ReA RFQ in 2010 the design voltage has never been reached, and CW operation was never achieved due to cooling issues. In 2016 a new design including trapezoidal modulation was proposed, which permitted achieving increased reliability, and would allow reaching the original required specifications. The proposed new rods were built and installed in 2019 and commissioned in the same year. Since then, the RFQ has been working very successfully. Recently it was opened for inspection and verification of its internal status. No damage and discoloration were observed. This contribution will describe the RFQ rebuild process, involving specific RF protections and other technical aspects related to the assembly of the structure. Results of the operation with a variety of beams will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST022  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIYGD3 FRIB Commissioning and Early Operations 802
 
  • J. Wei, H. Ao, S. Beher, G. Bollen, N.K. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J.C. Curtin, K.D. Davidson, X.-J. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T. Glasmacher, J.-W. Guo, Y. Hao, W. Hartung, N.M. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D.D. Jager, S. Jones, N. Joseph, T. Kanemura, S.H. Kim, C. Knowles, P. Knudsen, T. Konomi, B.R. Kortum, T. Lange, M. Larmann, T.L. Larter, K. Laturkar, R.E. Laxdal, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, C. Magsig, P.E. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, Y. Momozaki, D.G. Morris, M. Mugerian, I.N. Nesterenko, C. Nguyen, P.N. Ostroumov, M.S. Patil, A.S. Plastun, J.T. Popielarski, L. Popielarski, M. Portillo, J. Priller, X. Rao, M.A. Reaume, H.T. Ren, K. Saito, B.M. Sherrill, A. Stolz, B.P. Tousignant, R. Walker, X. Wang, J.D. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, T. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • B. Arend, T.N. Ginter, E. Kwan, M.K. Smith, M. Steiner, O. Tarasov
    NSCL, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • M.P. Kelly, Y. Momozaki
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams (FRIB) project has completed technical construction in January 2022, five months ahead of schedule baselined about 10 years ago. Beam commissioning has been planned in seven phases starting from 2017 when the normal-conducting ion source and RFQ were commissioned. In April 2021, FRIB driver linac commissioning was completed with heavy ion beams being accelerated to energies above 200 MeV/u using 324 superconducting radiofrequency (SRF) resonators contained in 46 cryomodules. In preparation for high-power operations, a liquid lithium charge strip-per was used to strip uranium beam from average charge state of 33+ to 78+, and multiple charge states were accelerated simultaneously in the linac. By January 2022, FRIB target and fragment separator commissioning was completed with rare-isotope beams produced and identified. In May 2022, the first FRIB user scientific experiment was successfully conducted. This talk summarizes the FRIB accelerator project commissioning and early operations experience with discussions on strategic planning, operational envelope conformance, technical risk mitigation, and lessons learned.
 
slides icon Slides TUIYGD3 [23.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIYGD3  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)