

FRIB commissioning and early operations

Jie Wei On Behalf of FRIB Accelerator Team & Collaboration IPAC, Bangkok, June 14, 2022

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Hot off the press
 - May 2, 2022: FRIB ribbon-cutting
 - May 27, 2022: *Phys. Rev. Lett.* cover article on liquid Li charge stripping at FRIB
- Introduction
- Driver linac commissioning
- Target and fragment separator commissioning
- Early operations
- Summary and lessons learned
- Future perspectives

May 2, 2022 Ribbon-Cutting: Start of FRIB's Scientific Mission

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

May 27, 2022: Phys. Rev. Lett. cover article "Experimental demonstration of the thin-film liquid-metal jet as a charge stripper", T. Kanemura et al.

VOLUME 128, NUMBER 21

Photograph of the liquid lithium film charge stripper in the Facility for Rare Isotope Beams. Selected for a Synopsis in *Physics* [Kanemura *et al.* Phys. Rev. Lett. 128 212301 (2022)

PHYSICAL REVIEW LETTERS

Contents

Articles published 21 May-27 May 2022

77	M	[ov	20	122
<i>21</i>	141	lay	20	22

212502

NEWSPAPER

	General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.	
	Observation of Massiess and Massive Collective Excitations with Faraday Patterns in a Two-Component Superfluid R. Cominotti A. Berti A. Faralfi A. Zenesini G. Lamporesi I. Carusotto, A. Becati, and G. Ferrari	210401
	First-Order Trotter Error from a Second-Order Perspective	210501
	David Layden	
	Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding	210502
	How Stickings Can Speed Up Diffusion in Confined Systems A. Alexandre, M. Mangeat, T. Guérin, and D. S. Dean	210601
	Gravitation and Astrophysics	
	γ-Ray Flashes from Dark Photons in Neutron Star Mergers Melissa D. Diamond and Gustavo Marques-Tavares	211101
	Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability José Luis Jaramillo, Rodrigo Panosso Macedo, and Lamis Al Sheikh	211102
	Elementary Particles and Fields	
9 9	Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory Fabrizio Caola, Amlan Chakraborty, Giulio Gambuti, Andreas von Manteuffel, and Lorenzo Tancredi	212001
	Quark and Gluon Form Factors in Four-Loop QCD	212002
	Vladimir A. Smirnov, and Matthias Steinhauser	
	Nuclear Physics	
Ρ	Experimental Demonstration of the Thin-Film Liquid-Metal Jet as a Charge Stripper T. Kanemura, M. LaVere, R. Madendorp, F. Marti, T. Maruta, Y. Momozaki, P. N. Ostroumov,	212301
Ş	A. S. Plastun, J. Wei, and Q. Zhao Universal Properties of Weakly Bound Two-Neutron Halo Nuclei	212501
	Mesony Honor and Dam Thank San	

Nuclear Excitation by Electron Capture in Excited Ions Simone Gargiulo, Ivan Madan, and Fabrizio Carbone

(Continued Inside)

This paper was highlighted in the APS publication Physics (physics.aps.org).

By suggesting a few manuscripts each week, we hope to promote reading across fields. Please see our Announcement Phys. Rev. Lett. 98, 010001 (2007).

Copyright 2022 American Physical Society

Published by **American Physical Society**

Volume 128, Number 21

PHYSICAL

ETTERS

27 May 2022

REVIEW

Published week ending

21

Introduction

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Construction Completed in Jan. 2022 On Cost and Five Months ahead of Schedule

- A \$730 million national user facility funded by the U.S. Department of Energy Office of Science (DOE-SC), Michigan State University, and the State of Michigan
- FRIB construction completed in January 2022, on cost and five months ahead of schedule
- FRIB is now a DOE-SC scientific user facility for rare isotope research supporting the mission of the Office of Nuclear Physics in DOE-SC

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Enables Scientists to Make Discoveries

Properties of atomic nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysics: What happens inside stars?

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of laws of nature

• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

 Medicine, energy, material sciences, national security, work force Science is aligned with national priorities articulated by

- Nuclear Science Advisory Committee to DOE and NSF Long Range Plan for Nuclear Science (2015)
- National Research Council Decadal Survey of Nuclear Physics (2012)
- National Research Council Rare Isotope Science Assessment report (2006)

FRIB Optimized for Science with Fast, Stopped and Reaccelerated Rare Isotope Beams

- Key feature is a 200 MeV/u continuouswave linac with 400 kW beam power for all ions (8pµA or 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - Beams of all elements and short half-lives
 - Fast, stopped, and reaccelerated beams

1,600 Users Engaged and Ready for Science www.fribusers.org

- May 2020: FRIB First Experiments -Proposal Preparation workshop
- November 2020: Call for Proposals
- November 2020-January 2021 Individual Proposal Preparation Meetings
- August 2021: FRIB Program Advisory Committee (PAC1)

May 2022: First FRIB user experiments

- 1641 members (as of 23 April 2022)
 - 203 U.S. Institutions (38 states)
 - 226 International Institutions (52 countries)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Strategically Planned Beam Commissioning: 7 Phases over 5 Years

	Run	Area with beam	Energy [MeV/u]	Goal	Date
	1	Ion source, LEBT, RFQ, MEBT	0.5	Front end and civil integration	Jul 2017
	2	Linac Segment 1 with β=0.041 cryomodules	2	Cryogenic integration	May 2018
	3	LS1 with β=0.041 and 0.085 cryomodules	20	QWR and charge stripping validation	Feb 2019
	4	Linac Segment 2 β =0.29 and 0.53 cryomodules	200	2 K cryogenics and HWR validation	Mar 2020
	5	Linac Segment 3 β=0.53 cryomodules	> 200	Driver linac validation	Apr 2021
	6	Target hall pre-separator	RI	Targetry and RI production demonstration	Dec 2021
	7	Entire FRIB construction scope	RI	Readiness for user operations	Jan 2022
2	6		_		500
I		3DS J====================================	5 • • • • • • •	LS3	F52

4

3

LS1

2

LS2

J. Wei et al, TUIYGD3, IPAC

1

Driver linac commissioning

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

2017: Front End Beam Commissioned (Run 1) Integrate Warm Systems with New Civil Infrastructure

Argon beam at end of U-LEBT ⁴⁰Ar⁹⁺

 Beam based measurement & RF calibration in agreement within 1%

FRIB Lower LEBT, RFQ, MEBT, and the three β =0.041 cryomodules

Helium Refrigeration System Operational Keeping Cryomodules Cold at 4.5 K or 2 K Temperatures since 2018

2 K cold box commission, Dec. 2018

12:35

2 K cold box installation, Aug. 2018

FRIB helium refrigeration system cold box room

2018: Accelerated Beams > 2 MeV/u (Run 2) Integrated Cryogenic and Cryomodule Systems

2019: Accelerated Beams > 20 MeV/u (Run 3) FRIB Became World's Highest Energy CW Hadron Linac

FRIB Linac Segment 1 containing 15 SRF cryomodules

Feb 14, 2019, Ar⁹⁺ beam accelerated by cryomodule 1 – 14 above 20 MeV/u

2020: Accelerated Beams > 200 MeV/u (Run 4) Conducted During the Week before COVID-19 Executive Order

- Using two linac segments operating at both 2 K and 4.5 K temperature
- Three-day shift to accelerate ³⁶Ar beam above 200 MeV/u
 - Day 1: removed safety locks and conducted interlock re-validations
 - Day 2: steered beam around folding segment 1 with 100% transmissions
 - Day 3: tuned linac segment 2 to accelerate beam to the full energy

On 04:17, 19 March 2020, ³⁶Ar beam was accelerated to 204 MeV/u using 37 cryomodules. LS2 beam commissioning at the FRIB Main Control Room

2021: FRIB Linac Fully Commissioned (Run 5) Continued Precautions for COVID-19

 Distributing commissioning staff to five individual control rooms to comply with MIOSHA workplace safeguards under COVID-19

On 21:32, 25 April, 2021 the ⁸⁶Kr beam was accelerated to 212 MeV/u using all 46 cryomodules. FRIB driver linac commissioning at five distributed control rooms

BIM control room

Liquid Lithium Strips Heavy lons Lithium Jet at 60 m/s Strikes Deflector to Produce Li Film

On 17:22, 8 April 2021, the ¹²⁴Xe²⁶⁺ beam was accelerated to 17 MeV/u and stripped by liquid lithium charge stripper (beam commissioning at FRIB Main Control Room)

Simultaneous Multi-charge-state Acceleration Acceleration of 3 Beams of ¹²⁹Xe in LS2 with 100% Transmission

- Simultaneously accelerated ¹²⁹Xe⁴⁹⁺, ¹²⁹Xe⁵⁰⁺, ¹²⁹Xe⁵¹⁺ to 180 MeV/u
- Transmission after charge stripping is 100%
- Factor of 2.5 increase of beam intensity with three charge states acceleration as registered at LS2 beam dump

P. N. Ostroumov, et al., Phys. Rev. Lett. 126, 114801 (2021)

Charge state 50+

Charge state 49+,50+, 51+

Stripping efficiency into 50+: 30.5%

Stripping efficiency into 49+,50+, 51+: 76.5%

Target and fragment separator commissioning

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

2021: Rare Isotope Beams Produced (Run 6) Target and Beam Dump Systems Commissioned with Beam

On 17:46, 11 December, 2021, ⁸⁴Se isotopes were produced from a primary ⁸⁶Kr beam, separated, identified at FRIB

FRIB commissioning at four distributed control rooms

Resolving beam blockage due to installation issue

2022: Beam to Destination Focal Plane (Run 7) Completing FRIB Technical Project Scope by January 2022

Figure 2. Screenshot of the beam images on the target (left) and DB5 (right) viewers.

Figure 3. Beam distribution on the target (left) and DB5 viewers (right). The root mean square (rms) beam size on the target is 0.3 mm in both horizontal and vertical directions. The rms size of the beam on the DB5 viewer is 0.2 mm and 0.8 mm in horizontal and vertical planes respectively.

On 14:22, 25 January, 2022, delivery of a 210 MeV/u ³⁶Ar beam to the ARIS focal plane

Attained Key Performance Parameters

Early operations

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Readiness for Beam Operations Start PAC1 User Program May 11, 2022

- FRIB provided isotope beam to the decay station from May 11 – 18 for the first PAC approved experiment #21062
 - Primary beam: 1 kW of ⁴⁸Ca
 - RI beams: ⁴²Si was delivered to the experiment for the most of the experiment time

Objective Measures	Date
FSEE user operation start	Jan 2022 🗸
New Main Control Room in use	Mar 2022
Beam commissioning on user run	May 2022
1 st user experiment at FDSi	May 2022

H. Crawford, *et al.*, FRIB experiment e21062, Accessed 2022, https://userportal.frib.msu.edu/Pac/Experiments/PublicList M. Almond *et al.*, "FRIB decay station," Accessed 2022, http://www.ornl.gov/project/frib-decay-station

FRIB Single Event Effects Beam Line Operating: Industrial User Program Started

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Summary and lessons learned

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Technical Construction 2014 – 2022 Beam commissioning scope completed January 2022

Milestones	Date
DOE and MSU cooperative agreement	Jun 2009
CD-1: preferred alternatives decided	Sep 2010
CD-2/CD-3a: performance baseline, start of civil construction & long lead procurement	Aug 2013
CD-3b: start of technical construction	Aug 2014
FRIB linac construction completion	May 2021
Project technical construction completion	Jan 2022
Start of scientific user experiments	May 2022

FRIB linac includes the front end and 46 superconducting RF cryomodules

- ECR ion sources, RFQ
- 324 SRF cavities in 46 cryomodules with velocity β from 0.041 to 0.53
- 208 cold magnets, 350 warm magnets
- Liquid helium for 2 K, 4 K operations
- Liquid lithium and rotating carbon for charge stripping J. Wei et al, TUIYGD3, IPAC 2022, Slide 37

Experimental Systems Deployed in Phases 3-stage fragment separator for rare isotope production at high rates with high purities to maximize science reach

Target hall with target, beam dump, and wedge vessels supported by remote handling and non-conventional utilities

Target facility design

Vertical preseparator

Support areas, 3 subterranean levels

Vertical pre-separator containing a series of SC magnets weighing up to 180 Ton each

Target, Beam Dump, Wedge, Diagnostics In Preparation for User Programs and Power Ramp Up

- Target module assembly
- Starting with static target disc and beam dump for initial commissioning
 - Continue with single-slice rotating target for PAC1 user runs
 - Final target and beam dump designed for 100 kW and 300 kW heavy ion beam power, respectively
 - Rotating multi-slice graphite target 30 cm diameter, 5000 rpm (~ 60 MW/cm³ if stationary)

Target thermal imaging system

Experience and Lessons Learned

- Recruit worldwide and retains key subject matter experts (<u>own the best people</u>)
- Develop and mature key technologies in time to support the project schedule (<u>own the technology</u>)
- Align interests for infrastructure investment to support key construction steps and future research (<u>align</u> interests, invest in infrastructure)
- Closely collaborate with US national labs and worldwide partners for knowledge transfer and project support; rigorously manage collaboration (<u>collaborate without losing control</u>)
- Strategically facilitate phased commissioning to stagger work force, validate design principles, feed back on improvements, and meet schedule (<u>phase the scope for optimization</u>)
- Conduct rigorous external reviews, inviting the best experts to critique the work (review rigorously)
- Engage with industrial providers via exchange visits, weekly meetings, and extended stays (intimately engage vendors)
- The original "turn-key" approach to procure the large-scale cryogenic helium system from industry exposed the project to serious risks in budget and scope (<u>avoid "turn-key" on large-scale</u> <u>cryogenics</u>)
- Early shortcuts taken in SRF/QWR sub-component validation was costly (avoid shortcuts)
- Shared vacuum vessels in the target area complicate maintenance (consider maintenance)
- Lack of diagnostics and correctors in the 3D geometric layout complicates fragment separation (<u>ensure</u> <u>adequate diagnostics and adjustments</u>)
- Conduct systematic R&D for novel technology, e.g. bottom-up cryomodule (<u>systematic R&D</u>);
- Thorough testing is needed for all major technical equipment, e.g. SRF sub-components, cryomodules, superconducting magnets (<u>test thoroughly</u>)
- Pro-actively facilitate critical system validation, e.g. for liquid Li stripper (<u>facilitate critical validation</u>)
 J. Wei et al, TUIYGD3, IPAC 2022, Slide 40

Collaboration with National Laboratories and International Partners: Key to Success

ANL

- · Liquid lithium charge stripper
- Beam dynamics verification ; β=0.29 HWR processing and testing ; SRF tuner validation ; beam dump ; SRF components development
- · RF couplers for multi-gap buncher
- SOLARIS
- BNL •
 - · Plasma window & charge stripper, physics modeling, magnets
- FNAL
 - · Diagnostics, SRF processing
- JLab
 - Cryoplant; cryodistribution design & prototyping
 - · Cavity hydrogen degassing; e-traveler
 - HWR processing & certification
 - · QWR and HWR cryomodule design and engineering support for production

Michigan State University

- LANL
 - Proton ion source
- LBNL
 - · ECR coldmass; beam dynamics
- MIT
 - CRIS
- ORNL
 - · Remote handling, diagnostics; large-vessel vacuum, cryoplant controls
 - FDSi
- SLAC
 - · Cryogenics, SRF multipacting, physics modeling

‡ Fermilab

- RIKEN
 - · Helium gas charge stripper
- TRIUMF
 - · Beam dynamics design, physics modeling SRF, QWR etching
- INFN
 - SRF technology
- KEK
 - SRF technology, SC solenoid prototyping
- IMP
 - Magnets
- Budker Institute, INR Institute
 - Diagnostics
- Tsinghua Univ. & CAS
 - RFQ
- ESS
 - Accelerator physics
- DTRA
 - RFQ power supply
- CSNSM-JaNNUS
 - · Nuclear recoil damage to materials
- RaDIATE
 - · Nuclear recoil damage to materials
- GANIL
 - · Rare isotope physics, target development
- GSI
 - Rare isotope physics, fragment separators
- U Notre Dame
 - Recoil implantation testing of materials

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

J. Wei et al. TUIYGD3, IPAC 2022, Slide 41

REPORT OF LA

Future perspectives

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Catching Up with World Leaders in Beam Power Frontier

- RIKEN is leading the heavy ion beam power frontier
 - Successfully operating at ~ 10 kW level at ~ 345 MeV/u
- FRIB just starts the 6-year planned power ramp up to 400 kW while preparing for energy upgrade to 400 MeV/u

- Example: phased deployment of targetry systems
 - Beam dump: (1) static 20° slanted; (2) static 6° slanted ...
 (3) 1 mm shell rotating; (4) 0.5 mm shell rotating, as we learn to manage NCU
 - Target: (1) static multi-position;
 (2) single-slice rotating; (3) multi-slice rotating
 - Wedge: (1) wedge ladder; (2)
 2nd wedge station; (3) nonlinear wedge ...

Conclusion

- Fourteen years after the site selection in 2008, the FRIB baseline was delivered on cost and 5 months ahead of schedule
- Strategically planned beam commissioning in 7 phases over 5 years successfully led to the start of user operations
- In subsequent years, the primary beam power will be progressively increased as operational experience is accumulated, working toward 400 kW
- Work is also proceeding in preparation for future upgrades, including a doubling of the primary beam energy to 400 MeV/u to enhance the scientific reach of the facility

Co-authors

- J. Wei, H. Ao, B. Arend, S. Beher, G. Bollen, N. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J. Curtin, K. Davidson, X. Du, K. Elliott, B. Ewert, A. Facco¹, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T. Ginter, T. Glasmacher, J. Guo, Y. Hao, W. Hartung, N. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D. Jager, S. Jones, N. Joseph, T. Kanemura, S.-H. Kim, C. Knowles, P. Knudsen, T. Konomi, B. Kortum, E. Kwan, T. Lange, M. Larmann, T. Larter, K. Laturkar, R.E. Laxdal², J. LeTourneau, Z.-Y. Li, S. Lidia, G. Machicoane, C. Magsig, P. Manwiller, F. Marti, T. Maruta, E. Metzgar, S. Miller, Y. Momozaki³, M. Mugerian, D. Morris, I. Nesterenko, C. Nguyen, P. Ostroumov, M. Patil, A. Plastun, J. Popielarski, L. Popielarski, M. Portillo, J. Priller, X. Rao, M. Reaume, H. Ren, K. Saito, B. M. Sherrill, M. K. Smith, M. Steiner, M. Stolz, O. Tarasov, B. Tousignant, R. Walker, X. Wang, J. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, Y. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao, Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA
- M. Wiseman, Thomas Jefferson National Laboratory, Newport News, Virginia, USA
- M. Kelly, Argonne National Laboratory, Argonne, Illinois, USA
- K. Hosoyama, KEK, Tsukuba, Japan
- S. Prestemon, Lawrence Berkeley National Laboratory, Berkeley, California, USA

¹also at INFN - Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy ²also at TRIUMF, Vancouver, British Columbia, Canada ³also at Argonne National Laboratory, Argonne, Illinois, USA

Acknowledgements

- The FRIB project has benefited from work-for-others agreements with many US/DOE national laboratories including ANL, BNL, FNAL, TJNAF, LANL, LBNL, ORNL, and SLAC, and from collaboration with institutes worldwide, including BINP, KEK, IHEP, IMP, INFN, INR, RIKEN, TRIUMF, and Tsinghua University. We thank the members of the FRIB advisory and review committees for their valuable guidance throughout the project, including the Accelerator Systems Advisory Committee chaired by S. Ozaki, the Technical Systems Advisory Committee, and the Accelerator Readiness Review Committee chaired by F. Kornegay. The FRIB accelerator design and construction were undertaken in close collaboration with the FRIB Science Division, the FRIB Experimental Systems Division, the FRIB Conventional Facility Division, and the Chief Engineer's team led by D. Stout, with support from the FRIB project controls, procurement, and ES&H teams.
- Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan, and Michigan State University.

Many Thanks to Our Industrial Partners Domestic in US and also Worldwide

- We thank industrial partners worldwide for their support to FRIB during the design, R&D, construction, commissioning, and early operations
- We are looking forward to continued collaboration towards FRIB's future improvements, expansion, and upgrades

We Are Looking for Energitic and Ambitious Scientists, Engineers, Students to Join FRIB

- During the past years, scientists, engineers, and post docs of a wide range of disciplines joined FRIB from national laboratories, universities and industrial companies worldwide (more than 30 countries) – their decidation and ingenuity made FRIB successful
- Students joined Michigan State University to pursue their career with FRIB (e.g. MSU cryogenic initiative, Accelerator Science and Engineering Traineeship program, MSU graduate school)
- We are looking for more energitic and ambitious scientists, engineers, and students to join our journey while extending their career with a state-of-the-art accelerator facility, and ambitious and challenging programs for future developments
 - High-power accelerator physics, rare isotope beam physics, high-power targetry, machine learning and automation, cryogenics, superconducting RF, superconducting magnets, controls, diagnostics, detector and data acquisition, mechanical engineering, electrical engineering, radiation and remote handling, large-project management ...

References

[1] US DOE/NSF Nuclear Science Advisory Committee, "Reaching for the horizon – the 2015 long range plan for nuclear physics," OSTI 1296778, US DOE Office of Science (September 2015). https://www.osti.gov/servlets/purl/1296778

[2] T. Kanemura, M. LaVere, R. Madendorp, F. Marti, T. Maruta, Y. Momozaki, P. N. Ostroumov, A. S. Plastun, J. Wei, Q. Zhao, "Experimental demonstration of the thin-film liquid-metal jet as a charge stripper," *Phys. Rev. Lett.* **128**, 212301 (2022). DOI: 10.1103/PhysRevLett.128.212301

[3] P. N. Ostroumov, K. Fukushima, T. Maruta, A. S. Plastun, J. Wei, T. Zhang, Q. Zhao, "First simultaneous acceleration of multiple charge states of heavy ion beams in a large-scale superconducting linear accelerator," *Phys. Rev. Lett.* **126**, 114801 (2021). DOI: <u>10.1103/PhysRevLett.126.114801</u>

[4] J. Wei et al., "Accelerator commissioning and rare isotope identification at the Facility for Rare Isotope Beams," Mod. Phys. Lett. A 37, 2230006 (2022). DOI: 10.1142/S0217732322300063

[5] E. Pozdeyev et al., "First acceleration at FRIB,", in LINAC 2018: Proceedings of the 29th Linear Accelerator Conference, Beijing, China, p. 615-619. DOI: 10.18429/JACoW-LINAC2018-WE2A01

[6] V. Ganni, P. Knudsen, D. Arenius, and F. Casagrande, "Application of JLab 12 GeV helium refrigeration system for the FRIB accelerator at MSU," in Advances in Cryogenic Engineering 59A, AIP Conference Proceedings 1573, edited by J.G. Weisend II et al., American Institute of Physics, Melville, NY, 2014, p. 323-328. DOI: 10.1063/1.4860718

[7] A. Facco et al., "Superconducting resonators development for the FRIB and ReA Linacs at MSU: recent achievements and future goals," in *IPAC 2012: Proceedings of the International Particle Accelerator Conference, New Orleans, LA, USA*, Paper MOOAC03, p. 61-63. <u>https://accelconf.web.cern.ch/IPAC2012/papers/mooac03.pdf</u>

[8] T. Xu et al., "Completion of FRIB Superconducting Linac and Phased Beam Commissioning," in Proceedings of SRF 2021: International Conference on RF Superconductivity, Paper MOOFAV10 (in press).

[9] P. N. Ostroumov, M. Hausmann, K. Fukushima, T. Maruta, A. S. Plastun, M. Portillo, J. Wei, T. Zhang, Q. Zhao, "Heavy ion beam physics at Facility for Rare Isotope Beams," J. Instrum. 15, P12034 (2020). DOI: 10.1088/1748-0221/15/12/P12034

[10] Q. Zhao, A. Facco, F. Marti, E. Pozdeyev, M. J. Syphers, J. Wei, X. Wu, Y. Yamazaki, Y. Zhang, "FRIB accelerator beam dynamics design and challenges," in HB 2012: Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, Beijing China, p. 404-408. <u>https://accelconf.web.cern.ch/accelconf/HB2012/papers/weo3b01.pdf</u>

[11] Z. He, Y. Zhang, J. Wei, Z. Liu, and R. M. Talman, "Linear envelope model for multi-charge state linac," Phys. Rev. ST Accel. Beams 17, 034001 (2014). DOI: 10.1103/PhysRevSTAB.17.034001

[12] P. N. Ostroumov et al., "Status of FRIB commissioning," in HB 2021: Proceedings of 64th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, Batavia, IL, USA, p. 203-207. DOI: 10.18429/JACoW-HB2021-WEDC3

[13] M. Hausmann et al., "Design of the Advanced Rare Isotope Separator ARIS at FRIB," Nucl. Instrum. Meth. B 317 p. 349 (2013). DOI: 10.1016/j.nimb.2013.06.042

[14] O. B. Tarasov and D. Bazin, "LISE++: radioactive beam production with in-flight separators," *Nucl. Instrum. Methods Phys. Res. B* 266, p. 4657-4664 (2008). DOI: <u>10.1016/j.nimb.2008.05.110;</u> http://lise.nscl.msu.edu/.

[15] O. B. Tarasov et al., "Production of very neutron-rich nuclei with a ⁷⁶Ge beam," Phys. Rev. C 80, 034609 (2009). DOI: 10.1103/PhysRevC.80.034609

[16] H. Suzuki et al., "Discovery of new isotopes 81.82 Mo and 85.86 Ru and a determination of the particle instability of ¹⁰³Sb," Phys. Rev. C 96, 034604 (2017). DOI: 10.1103/PhysRevC.96.034604

[17] H. Crawford, J. Allmond, B. Crider, R. Grzywacz, V. Tripathi, et al., FRIB experiment e21062, Accessed 2022, https://userportal.frib.msu.edu/Pac/Experiments/PublicList

[18] M. Almond et al., "FRIB decay station," Accessed 2022, http://www.ornl.gov/project/frib-decay-station

[19] S. Lidia, "A new heavy-ion single-event effects test facility at Michigan State University", presented at the 31st Single Event Effects (SEE) Symposium Military & Aerospace Programmable Logic Devices (MAPLD) Combined Workshop, San Diego, 15-18 May 2022.

Thank You!

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University