Paper | Title | Page |
---|---|---|
WEIXGD1 | EIC Beam Dynamics Challenges | 1576 |
|
||
The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost. | ||
![]() |
Slides WEIXGD1 [3.952 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1 | |
About • | Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT044 | Electron-Ion Collider Design Status | 1954 |
|
||
Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044 | |
About • | Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUIYGD3 | FRIB Commissioning and Early Operations | 802 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The Facility for Rare Isotope Beams (FRIB) project has completed technical construction in January 2022, five months ahead of schedule baselined about 10 years ago. Beam commissioning has been planned in seven phases starting from 2017 when the normal-conducting ion source and RFQ were commissioned. In April 2021, FRIB driver linac commissioning was completed with heavy ion beams being accelerated to energies above 200 MeV/u using 324 superconducting radiofrequency (SRF) resonators contained in 46 cryomodules. In preparation for high-power operations, a liquid lithium charge strip-per was used to strip uranium beam from average charge state of 33+ to 78+, and multiple charge states were accelerated simultaneously in the linac. By January 2022, FRIB target and fragment separator commissioning was completed with rare-isotope beams produced and identified. In May 2022, the first FRIB user scientific experiment was successfully conducted. This talk summarizes the FRIB accelerator project commissioning and early operations experience with discussions on strategic planning, operational envelope conformance, technical risk mitigation, and lessons learned. |
||
![]() |
Slides TUIYGD3 [23.483 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIYGD3 | |
About • | Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT036 | Dependence of Beam Size Growth on Macro-Particle’s Initial Actions in Strong-Strong Beam-Beam Simulation for the Electron-Ion Collider | 1924 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177. The Electron-Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collide polarized high energy electron beams with hadron beams with design luminosities up to 1×1034cm-2s-1 in the center mass energy range of 20-140 GeV. We simulated the planned electron-proton collision of flat beams with Particle-In-Cell (PIC) based Poisson solver in strong-strong beam-beam simulation. We observed a much larger proton emittance growth rate than that from weak-strong simulation. To understand the numerical noises further, we calculate the beam size growth rate of macro-particles as function of their initial longitudinal and transverse actions. This method is applied to both strong-strong and weak-strong simulations. The purpose of this study is to identify which group of macro-particles contributes most of the artificial emittance growth in strong-strong beam-beam simulation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT036 | |
About • | Received ※ 22 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT037 | Dynamic Aperture Evaluation for EIC Hadron Storage Ring with Crab Cavities and IR Nonlinear Magnetic Field Errors | 1927 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177. The electron ion collider (EIC) presently under construction at Brookhaven National Laboratory will collider polarized high energy electron beams with hadron beams with luminosities up to 1034 cm-2s-1 in the center mass energy range of 20-140 GeV. In this article, we evaluate the dynamic aperture of the Hadron Storage Ring (HSR) with symplectic element-by-element tracking. Crab cavities, nonlinear magnetic field errors, and weak-strong beam-beam interaction are included. We compared the dynamic aperture from head-on collision to crossing-angle collision and found the reason for the dynamic aperture drop. We also studied the field error tolerances for IR magnets and for some particular magnets. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT037 | |
About • | Received ※ 22 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT040 | Numerical Noise Error of Particle-In-Cell Poisson Solver for a Flat Gaussian Bunch | 1939 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177. The Electron-Ion Collider (EIC) presently under construction at Brookhaven National Laboratory will collider polarized high energy electron beams with hadron beams with luminosity up to 1×1034cm-2s-1 in the center mass energy range of 20-140 GeV. We simulated the planned electron-proton collision of flat beams with Particle-In-Cell (PIC) based Poisson solver in strong-strong beam-beam simulation. We observed a much larger proton emittance growth rate than that from weak-strong simulation. To better understand the emittance growth rate from the strong-strong simulation, we compare the beam-beam kicks between the PIC method and the analytical calculation and calculate the RMS variation in beam-beam kicks among 1000 sets of random Gaussian particle distributions. The impacts of macro-particle number, grid number, and bunch flatness are also studied. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT040 | |
About • | Received ※ 23 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT041 | Strong-Strong Simulations of Coherent Beam-Beam Effects in the EIC | 1942 |
|
||
The high luminosity electron ion collider (EIC) will provide great opportunities in nuclear physics study and is under active design. The coherent effects due to the beam-beam interaction of two colliding beams can cause beam size blow-up and degrade the luminosity in the EIC. In this paper, we report on the study of coherent beam-beam effects in the EIC design using self-consistent strong-strong simulations. These simulations show the coherent dipole and quadrupole mode instabilities in the tune working point scan and bunch intensity scan. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT041 | |
About • | Received ※ 18 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT049 | Beam-Beam Interaction for Tilted Storage Rings | 1968 |
|
||
In the Electron-Ion Collider (EIC) design, to avoid vertical orbit bumps in the Electron Storage Ring (ESR) at some crossing points with Hadron Storage Ring (HSR) to preserve the electron polarization, we plan to tilt the ESR plane by 200 ’rad with an axis connecting IP6 and IP8. In this article, we study the beam-beam interaction when two rings are not in the same plane. The Lorentz boost formula is derived and the required vertical crabbing strength is calculated to compensate the dynamic effect The strong-strong simulations are performed to validate the theory. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT049 | |
About • | Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |