Author: Agapov, I.V.
Paper Title Page
TUPOMS014 PETRA IV Storage Ring Design 1431
 
  • I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, T. Hellert, M. Hüning, M.A. Jebramcik, J. Keil, C. Li, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV will be a diffraction-limited 6 GeV synchrotron light source with an emittance of 20 pm rad at DESY Hamburg. The TDR phase is nearing completion, and the lattice design is being finalised. The lattice will be based on the six-bend achromat cell with extensive use of damping wigglers. The key challenges of the lattice design are finding the balance between emittance minimisation and non-linear beam dynamics performance, and adapting the lattice to a collider-type tunnel geometry of the PETRA facility, with the long straight sections and low degree of superperiodicity. We present the lattice design and the beam physics aspects, focusing on the beam dynamics performance and optimisation, and the projected beam parameters taking collective effects and lattice imperfections into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS015 Proposal of a Girder Realignment Test in PETRA III 1435
 
  • M. Schaumann, I.V. Agapov, R. Bartolini, M. Bieler, R. Böspflug, D. Einfeld, M.G. Hoffmann, J. Keil, L. Liao, G. Priebe, M. Schlösser, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV can benefit from the fine control of the girders that carry the storage ring elements to achieve the design beam performance. Based on the corrector magnet strength pattern it is desired to realign girders to stay within the alignment tolerances. In the current PETRA III configuration, the girders in the Max von Laue Hall are equipped for remote alignment, however, those have not been moved since their initial installation and the alignment system is currently not connected to the control system. In preparation for PETRA IV, a movement test of one of the PETRA III girders should confirm the ability to safely and precisely remote control the equipment based on an optics model that describes the effect of the girder movement on the orbit. This paper studies the feasibility of this test and prepares an initial mock-up experiment to be performed on a spare girder.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS015  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS016 A Pipeline for Orchestrating Machine Learning and Controls Applications 1439
 
  • I.V. Agapov, M. Böse, L. Malina
    DESY, Hamburg, Germany
 
  Machine learning and artificial intelligence are becoming widespread paradigms in control of complex processes. Operation of accelerator facilities is not an exception, with a number of advances having happened over the last years. In the domain of intelligent control of accelerator facilities, the research has mostly been focused on feasibility demonstration of ML-based agents, or application of ML-based agents to a well-defined problem such as parameter tuning. The main challenge on the way to a more holistic AI-based operation, in our opinion, is of engineering nature and is related to the need of significant reduction of the amount of human intervention. The areas where such intervention is still significant are: training and tuning of ML models; scheduling and orchestrating of multiple intelligent agents; data stream handling; configuration management; and software testing and verification requiring advanced simulation environment. We have developed a software framework which attempts to address all these issues. The design and implementation of this system will be presented, together with application examples for the PETRA III storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS016  
About • Received ※ 09 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS018 Error Analysis and Commissioning Simulation for the PETRA-IV Storage Ring 1442
 
  • T. Hellert, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, M.A. Jebramcik, J. Keil
    DESY, Hamburg, Germany
 
  The upgrade of the PETRA-III storage ring into a diffraction limited synchrotron radiation source is nearing the end of its detailed technical design phase. We present a preliminary commissioning simulation for PETRA-IV demonstrating that the final corrected machines meet the performance design goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS018  
About • Received ※ 10 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS019 Collimation Strategy for the Low-Emittance PETRA IV Storage Ring 1445
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil
    DESY, Hamburg, Germany
 
  The beam-intensity losses in the proposed PETRA IV electron storage ring that will replace DESY’s synchrotron light source PETRA III will be dominated by the Touschek effect due to the high bunch density. The beam lifetime will only be in the range of 5 h in the timing mode (80 high-intensity bunches) leading to a maximum power loss of ~170 mW along the storage ring (excluding injection losses). To avoid the demagnetization of the permanent-magnet undulators and combined-function magnets, this radiation-sensitive hardware has to be shielded against losses as well as possible. Such shielding elongates the lifetime of the hardware and consequently reduces the time and the resources that are spent on maintenance once PETRA IV is operational. This contribution presents options for collimator locations, e.g., at the dispersion bump in the achromat cell, to reduce the exposure to losses from the Touschek effect and the injection process. This contribution also quantifies the risk of damaging the installed collimation system in case of hardware failure, e.g., RF cavity or quadrupole failure, since the beam with an emittance of 20 pm could damage collimators if there is no emittance blow-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS019  
About • Received ※ 08 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS029 Status of the PETRA IV Machine Project 1475
 
  • R. Bartolini, I.V. Agapov, A. Aloev, R. Bacher, R. Böspflug, H.-J. Eckoldt, J. Hauser, M. Hüning, P. Hülsmann, N. Koldrack, B. Krause, L. Lilje, G. Loisch, R. Onken, A. Petrov, S. Pfeiffer, J. Prenting, H. Schlarb, M. Thede, M. Tischer
    DESY, Hamburg, Germany
 
  DESY is planning the upgrade of PETRA III to a fourth generation light source, providing high brightness, quasi diffraction limited hard X-ray photons. The project is underpinned by the construction of a new storage ring PETRA IV, based on a 20 pm accelerator lattice using a hybrid 6-bend achromat concept. We review here the status of the machine project, the latest development in the different technical subsystems, the status of the engineering integration and the plans for the implementation of the new ring in the existing PETRA III tunnel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS029  
About • Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST029 First Start-to-End Simulations of the 6 GeV Laser-Plasma Injector at DESY 1757
 
  • S.A. Antipov, I.V. Agapov, R. Brinkmann, Á. Ferran Pousa, M.A. Jebramcik, A. Martinez de la Ossa, M. Thévenet
    DESY, Hamburg, Germany
 
  DESY is studying the feasibility of a 6 GeV laser-plasma injector for top-up operation of its future flagship synchrotron light source PETRA IV. A potential design of such an injector involves a single plasma stage, a beamline for beam capture and phase space manipulation, and a X-band rf energy compressor. Numerical tracking with realistic beam distributions shows that an energy variation below 0.1%, rms and a transverse emittance about 1 nm-rad, rms can be achieved under realistic timing, energy, and pointing jitters. PETRA IV injection efficiency studies performed with a conservative 5% beta-beating indicate negligible beam losses for the simulated beams during top-up. Provided the necessary progress on high-power lasers and plasma cells, the laser plasma injector could become a competitive alternative to the conventional injector chain.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST029  
About • Received ※ 02 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS036 Accelerating Linear Beam Dynamics Simulations for Machine Learning Applications 2330
 
  • O. Stein, I.V. Agapov, A. Eichler, J. Kaiser
    DESY, Hamburg, Germany
 
  Machine learning has proven to be a powerful tool with many applications in the field of accelerator physics. Training machine learning models is a highly iterative process that requires large numbers of samples. However, beam time is often limited and many of the available simulation frameworks are not optimized for fast computation. As a result, training complex models can be infeasible. In this contribution, we introduce Cheetah, a linear beam dynamics framework optimized for fast computations. We show that Cheetah outperforms existing simulation codes in terms of speed and furthermore demonstrate the application of Cheetah to a reinforcement-learning problem as well as the successful transfer of the Cheetah-trained model to the real world. We anticipate that Cheetah will allow for faster development of more capable machine learning solutions in the field, one day enabling the development of autonomous accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS036  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pm based on a hybrid six-bend achromat lattice. Such a lattice design leads to the difficulty of injecting the incoming beam into an acceptance that is as small as 2.6 um. In contrast to earlier lattice iterations based on a seven-bend achromat lattice, the latest version allows accumulation, i.e., the off-axis injection of the incoming beam. In this contribution, the effects of deploying different septum types, namely a pulsed or a Lambertson septum, on the injection process as well as the injection efficiency are presented. This analysis includes the effects of common manipulations to the injected beam, e.g., beam rotation and aperture sharing, on the injection efficiency. Furthermore, the option of a nonlinear kicker and its optimization (wire positions, wire current, optics functions) are presented since a nonlinear kicker could provide an alternative to the rather large number of strip-line kickers that are necessary to generate the orbit bump at the septum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK002 Magnet Design for the PETRA IV Storage Ring 2767
 
  • R. Bartolini, I.V. Agapov, A. Aloev, H.-J. Eckoldt, D. Einfeld, B. Krause, A. Petrov, M. Thede, M. Tischer
    DESY, Hamburg, Germany
  • J. Chavanne
    ESRF, Grenoble, France
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pmrad. It is based on a hybrid six-bend achromat lattice. In addition to the storage ring PETRA IV, the Booster Synchrotron and the corresponding transfer line will be renewed. Overall about 4000 magnets will be manufactured. The lattice design require high-gradient quadrupoles, which are unfeasible with conventional steel, used traditionally for normal-conducting magnets. The required gradient is safely reached with the poles, made of Permendur. The bending magnets for the storage ring will be based on permanent magnets. This contribution presents the electromagnetic design of the magnets for the storage ring and booster synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK002  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)