
A PIPELINE FOR ORCHESTRATING MACHINE LEARNING
AND CONTROLS APPLICATIONS

I. Agapov∗, M. Böse, L. Malina
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Abstract
Machine learning and artificial intelligence are becoming

widespread paradigms in control of complex processes. Op-
eration of accelerator facilities is not an exception, with a
number of advances having happened over the last years. In
the domain of intelligent control of accelerator facilities, the
research has mostly been focused on feasibility demonstra-
tion of ML-based agents, or application of ML-based agents
to a well-defined problem such as parameter tuning. The
main challenge on the way to a more holistic AI-based oper-
ation, in our opinion, is of engineering nature and is related
to the need for significant reduction of the amount of human
intervention. The areas where such intervention is still sig-
nificant are: training and tuning of ML models; scheduling
and orchestrating of multiple intelligent agents; data stream
handling; configuration management; and software testing
and verification requiring advanced simulation environment.
We have developed a software framework which attempts
to address all these issues. The design and implementation
of this system will be presented, together with application
examples for the PETRA III storage ring.

RATIONALE
One of the promises of AI technology for research facili-

ties is the increased automation of operation. A significant
progress has been achieved in recent years in understanding
the potential of AI and ML for accelerator operation. A
usual common feature of the developed ML solutions is the
increased complexity of the software and the algorithms:
so, a Neural Network (NN)-based controls approach usu-
ally requires a more complex software stack, model storage,
model tuning and re-training. In our previous work [1] we
realized that being a more powerful representation in control
problems, NNs can be prohibitively complex compared to
more simple linear control approaches, as the results have
to be constantly interpreted and evaluated, and the software
stack common in data science becomes unsatisfactory for
robust on-line applications. Significant human intervention
was always required, making the operation not more but
less autonomous. Based on this experience we started devel-
oping a software framework that would help address these
issues. The framework allows execution and communication
of services, each responsible for a certain subset of tasks
necessary for intelligent control and operation.

Services with well-defined functionality and interfaces.
All operations are performed by services. A service per-
forms well-defined action such as orbit correction, retraining

∗ ilya.agapov@desy.de

Figure 1: Basic states for autonomous operation.

a model etc. Each service has a well-defined API, with stan-
dard operations being starting, stopping, and re-configuring.
An arbitrary number of services can be running, any func-
tionality can be implemented as soon as the API is adhered
to, and automatic service discovery is allowed.

Distributed deployment and communication bus. All
services have access to a common communication bus, and
are able to send and receive messages. A message header
contains information such as the addressed service (or broad-
cast) and the body contains an arbitrary set of instructions
and data in the form of a dictionary. Services can run any-
where on the network, and the system can be transparently
scaled up by deploying certain services on an HPC cluster.

Decentralized architecture While the software does not
impose any constraints on the kind of services that are being
run, the design is geared towards the needs of autonomous
operation, based on the following paradigm (see Fig. 1):
there are a number of services related to machine startup,
that can include: health checks of various subsystems, first-
turn steering and trajectory correction, orbit correction, optic
correction, accumulation (top-up). A supervision service
monitors the machine startup and decides if the startup has
been accomplished successfully, in which case transition
into the "use run" mode can be performed, otherwise failure
handling is activated, which can either attempt to resolve
the issue autonomously or transition into manual mode. In
the user mode a number of monitoring and slow correction
services are active. A user run can either end normally
or in a failure. A failure resolution can be attempted in
an autonomous mode, or manual control can be initiated.
Failure handling is one of the most important aspects of
autonomous operation, with research activities ongoing.

Digital twin: simulation mode. The software follows
the methodology of OCELOT [2,3] where the so-called Ma-
chineAdaptors are used to encapsulate the control systems

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS016

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOMS016

1439

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 2: Schematic of the proposed software framework.

specifics, and keep most of the code control system agnostic,
which ensures easy portability between facilities. Here we
make one step further and introduce a digital twin. It is
implementing as a database of machine parameters (such
as magnet settings, the BPM readings etc.) and set of ser-
vices that can either update this database on a regular basis
or be triggered by a certain parameter change (e.g. closed
orbit is recalculated when a corrector setting changes). Com-
plex dynamics models (such as the ground motion) can be
implemented.

The concept is schematically represented in Figure 2.

IMPLEMENTATION DETAILS
acss is implemented in a microservice architecture in

which each service is running in an isolated process in a
Docker container [4]. The Docker containers are orches-
trated with Docker-Compose [5]. Services in acss are com-
municating with each other by publishing and subscribing
to events over Kafka [6].

acss has core services which are needed for the basic
functionality, shown in Fig. 3. The fist one is the register
service which is responsible for health checks and to ensure
that the names of every service is unique by holding a list of
all registered services.

The second core service is the observer service which is
responsible for storing processed messages in a key-value
store and provides a Rest API for checking if a message is
processed. This is needed to interact with acss by interac-
tive computing platforms like Jupyter because acss internal
communication is asynchronous.

The last core service is the machine service which is the
switch between simulation or real machine. This switching
is realized by changing the read/write method of the ma-
chine service at the initialization phase. In simulation mode
the machine service is reading an writing from a database
which is reflecting the simulation. In production mode the
machine service is reading directly form the accelerator spe-
cific control system. The machine service is also responsible

Figure 3: Workflow framework to implement services.

for processing write commands which are published by the
proposal event. After each writing the machine service pub-
lishes what has changed on the machine event topic.

Beside core services there are user services which are
programmed by the user. The user have to inherit from a
service base class and overload the defined abstract member
functions. In the current implementation there are two ser-
vice base classes. The first one is simulation service which
is for writing a simulation for a specific physical effect. Each
simulation service is subscribed to the machine event and
will be triggered when a new machine event is published.
The second is the agent service which is foreseen for imple-
menting algorithms which are making proposals based on
machine observations. This proposals will be published on
the proposal event topic.

USER STORIES / USE-CASES
In the following we highlight some user stories/use-cases.

• Starting and stopping services via web interface:

– Starting agents/services: only agents that are in
the repository can be started

– All running agents/services and simulations
should be seen on the web interface

• Writing own agents/services, simulations and adapter
by users:

– For Simulations:
∗ Multiple simulations can run at the time

– For agents/services:
∗ Multiple agents/services can run at the time
∗ The user can reconfigure parameters while

the agents/service is running
∗ An agent/servics can be triggered by other

agents/services
∗ An agent/service can set and get parameters

for the simulation and for the real machine
∗ The user can write machine parameter to the

real machine/simulation and wait until the
parameter are written or fire and forget

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS016

TUPOMS016C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1440

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



∗ The user can write multiple write commands
at once to the real machine/simulation

∗ An agent/service can wait for one or multiple
simulations to be finished

∗ The agents/services should communicate
with each other over a standardised protocol

• The user can switch easily between simulation and real
machine

• The user can start, stop, list, and trigger agents via
Jupyter notebook

– The user can wait for agents to be finished

• A user should have his own session with his own re-
sources (e.g. agents, simulations, etc.) which is decou-
pled from other user sessions in order to not interfere
other users

BEAM TESTS
The pipeline was tested extensively at the PETRA III

storage ring at DESY using the orbit correction agent as an
example. The orbit correction using the SVD approach is
standard, and is easy to implement and cross-check with
existing software. The goal of the tests was to understand
the modalities and interfaces when the orbit correction is
triggered in a way that does not allow for direct interaction
with a user. A pipeline featuring an orbit correction service
was running in the controls network, and the service was
triggered through a Jupyter notebook script. The service
was tested in advance in simulation model on the digital
twin. Main lessons lessomns learned were as follows:

i. Re-configuring the algorithm (e.g. excluding malfunc-
tioning BPMs or orbit correctors, adjusting SVD cutoffs etc.)
is often required and implementing appropriate APIs for on
the flight service reconfiguration was necessary.

ii. Judging the success, number of iterations, and stopping
criteria is easy for an expert by often difficult to implement
algorithmically, and it is very likely that in the initial phases
of an autonomous system deployment the exit to the manual
mode is to be expected often.

iii. Generally, paradigm for testing is of paramount impor-
tance. While the "physics" algorithms can be tested on the
digital twin, a lot of errors are happening in the hardware
communication layer, and introducing another communica-
tion layer makes testing the system non-trivial. Based on
this experience, logging capabilities were improved substan-
tially.

SUMMARY AND OUTLOOK
The current implementation of the acss pipeline core is

available under [7]. Some service examples for PETRA III

can be found under [8]. A number of algorithms is available
as python code but not yet as an acss service for PETRA
III. Table 1 lists the status of service implementation. Note
that failure handling capabilities are not yet worked out in
detail and require special attention beyond pure software
engineering. Beyond storage ring functionality, there are
plans to implement sets of acss services for linear accelerator
operation.

Table 1: Status of Service Implementation for PETRA III

Service Status
Orbit/optics sim., static ✓
Orbit/optics sim., with ground motion ✗
First-turn threading ✗
Orbit correction ✓
Orbit measurement AC dipole ✓
Optics measurement ORM ✗
Undulator gap compensation calculation ✗
TM-PNN [1] retraining ✗

Failure handling Needs R&D

ACKNOWLEDGEMENTS
This work received funding from the Helmholtz Interna-

tional Labs project HIR3X.

REFERENCES
[1] A. Ivanov and I. Agapov, Phys. Rev. Accel. Beams, vol. 23,

no.7, p. 074601, 2020.
doi:10.1103/PhysRevAccelBeams.23.074601

[2] I. Agapov, G. Geloni, S. Tomin, and I. Zagorodnov, “OCELOT:
A software framework for synchrotron light source and FEL
studies,” Nucl. Instrum. Meth. A, vol. 768, pp. 151-156, 2014.
doi:10.1016/j.nima.2014.09.057

[3] S. Tomin, I. Agapov, W. Decking, G. Geloni, M. Scholz, and
I. Zagorodnov, “On-line optimization of European XFEL with
OCELOT,” Proc. of ICALEPCS’17, Barcelona, Spain, 2017.
doi:10.18429/JACoW-ICALEPCS2017-WEAPL07

[4] docker: https://docs.docker.com/

[5] docker-compose: https://docs.docker.com/compose/

[6] kafka:
https://kafka.apache.org/

[7] Core framework:
https://github.com/desy-ml/acss-core.git

[8] Services:
https://github.com/desy-ml/acss-services.git

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS016

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOMS016

1441

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


