MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T18 Radiation Monitoring and Safety
Paper Title Page
TUPAB314 SPS Personnel Protection System: From Design to Commissioning 2224
 
  • T. Ladzinski, T. Hakulinen, F. Havart, V. Martins De Sousa Dos Rios, M. Munoz Codoceo, P. Ninin, J.P. Ridewood, E. Sanchez-Corral Mena, D. Vaxelaire
    CERN, Meyrin, Switzerland
 
  During the second long shutdown (LS2) of the accelerator complex at CERN, the access system of the Super Proton Synchrotron (SPS) was completely renovated. This complex project was motivated by the technical obsolescence and lack of sufficient redundancy in the existing system, as well as by the need for homogenisation of technologies and practices across the different machines at CERN. The new Personnel Protection System includes 16 state-of-the-art access points making sure that only fully identified, trained and authorised personnel can enter the facility and an interlock system with a rationalized number of safety chains designed to meet the current safety standards. The control part is based on Siemens 1500 series of programmable logic controllers, complemented by a technologically diverse relay logic loop for the critical safety functions. This paper presents the new system and the design choices made to permit fast installation in a period where the access system itself was heavily used to allow vast upgrades of the SPS accelerator and its infrastructure. It also covers the verification and validation methodology and lessons learned during the commissioning phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB314  
About • paper received ※ 14 May 2021       paper accepted ※ 10 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB315 Development of Disaster Prevention System for Accelerator Tunnel 2228
 
  • K. Ishii, K. Bessho, M. Yoshioka
    KEK, Ibaraki, Japan
  • Y. Kawabata, H. Matsuda, K. Matsumoto
    Tobishima Corp., Tokyo, Japan
  • S. Tagashira
    Kansai University, Osaka, Japan
  • N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by Health Labor Sciences Research Grant of Japan
In an enclosed space such as a particle accelerator tunnel, ensuring worker safety during a disaster is an issue of critical importance. It is necessary to have a system in which the manager can know from outside the tunnel whether there is any worker left behind and whether the worker is escaping in the right direction. Because a global positioning system (GPS) is not available in the tunnel, we are developing a disaster prevention system that uses Wi-Fi to transmit the positioning of workers and two-way communication. The Wi-Fi access point (AP) installed in the tunnel should be radiation resistant. Additionally, the equipment carried by the worker is convenient and easy to carry. We tested the radiation hardness of commercial AP devices and developed a smartphone application to perform location information transmission and simultaneous character transmission. In 2019, we installed the system on the J-PARC Main Ring and started its operation. In this paper, the functions of the developed system and its prospects are described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB315  
About • paper received ※ 19 May 2021       paper accepted ※ 10 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB316 New Operational Quantities for Radiation Protection by ICRU and ICRP: Impact on Workplaces at Accelerators 2231
 
  • Th. Otto, M. Widorski
    CERN, Meyrin, Switzerland
 
  In radiation protection, Effective Dose E quantifies stochastic radiation detriment. E is defined as a weighted sum of absorbed dose to organs and tissues and cannot be measured directly. ICRU has defined operational quantities to measure effective dose approximately, such as Ambient dose equivalent H*(10). At high energies, the estimates provided by H*(10) deviate strongly from effective dose. In 2020, ICRU and ICRP have recommended new operational quantities for external radiation with a definition close to the one of effective dose, and published an extensive collection of conversion coefficients from particle fluence to the new quantities (1). Ambient dose H* serves for operational monitoring purposes. The new definition alleviates the observed discrepancies of H*(10) with effective dose. In this paper, we present a numerical study of effective dose E, ambient dose equivalent H*(10) and ambient dose H* in radiation fields at workplaces at proton- and electron accelerators. These places include locations behind primary shielding, in access mazes and in the vicinity of activated accelerator components.
(1) ICRU Report 95, Operational quantities for external radiation
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB316  
About • paper received ※ 11 May 2021       paper accepted ※ 02 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB317 Benchmarking of the Radiation Environment Simulations for CMS Experiment at LHC 2235
 
  • I.L. Azhgirey, I.A. Kurochkin, A.D. Riabchikova
    IHEP, Moscow Region, Russia
  • D. Bozzato, A.E. Dabrowski, P. Kicsiny, S. Mallows, J. Wanczyk
    CERN, Geneva, Switzerland
 
  Radiation Simulations group of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment provide for CMS radiation environment and radiation effects simulation and benchmarking of these calculations with CMS data and other data from LHC measuring devices. We present some results of such benchmarking and the reliability analysis of the simulation procedures for radiation environment calculations at the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB317  
About • paper received ※ 19 May 2021       paper accepted ※ 16 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB318 The Beamline Safety Interlock System of Taiwan Photon Source 2239
 
  • C.F. Chang, C.Y. Chang, C.Y. Liu, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The energy of synchrotron radiation generated by bremsstrahlung radiation and magnet is rather high, which may cause serious radiation damage to human body or even imperil people’s life. The beamline therefore must be equipped with radiation-protection system; in addition, the overheat of optical components exposed to synchrotron radiation will lead to the damage of optical components and devices. In consequence, the beamline should be furnished with the cooling-protection system to cool down optical components and devices. The Beamline Safety Interlock System targets at protecting the personnel and the safety of devices, limiting the radiation dose to a security value for experimental personnel or staffs exposing to radiation on the site as well as preventing beamline components from being exposed to overheat or vacuum damages to improve the effectiveness of beamline.  
poster icon Poster TUPAB318 [3.440 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB318  
About • paper received ※ 09 May 2021       paper accepted ※ 10 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB319 SNS Credited Beam Power Limit System Preliminary Design 2242
 
  • C. Deibele
    ORNL, Oak Ridge, Tennessee, USA
  • K.L. Mahoney
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  The Controls Group at the Spallation Neutron Source (SNS) is designing a programmable signal processor based credited safety control that calculates pulsed beam power based on beam kinetic energy and charge. The system must reliably shut off the beam if the average power exceeds 2.145 MW averaged over 60 seconds. This paper discusses architecture and design choices needed to develop the system under the auspices of a programmable radiation-safety credit control.  
poster icon Poster TUPAB319 [1.925 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB319  
About • paper received ※ 16 May 2021       paper accepted ※ 02 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB320 Physical Design of the Radiation Shielding for the CMS Experiment at LHC 2246
 
  • I.L. Azhgirey, I.A. Kurochkin, A.D. Riabchikova
    IHEP, Moscow Region, Russia
  • D. Bozzato, A.E. Dabrowski, S. Mallows
    CERN, Meyrin, Switzerland
 
  The design of the radiation shielding for the CMS experiment at the LHC requires a simulation of the radiation environment using a model of the CMS experimental setup, accelerator components and the experimental hall infrastructure. The radiation simulations are used to optimise the design of the CMS detectors components and also the interface of the CMS detector with LHC accelerator. The Beam Radiation Instrumentation and Luminosity Project of CMS is responsible for giving important input into the optimisation and upgrade of radiation shielding used in CMS and also the radiation environment simulations software infrastructure. This contribution describes the organization of this work, the simulation software environment used for this part of CMS experiment activity and recent radiation simulation results used to optimise the forward shielding for CMS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB320  
About • paper received ※ 19 May 2021       paper accepted ※ 16 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB322 Redesign and Upgrade of the LHC Access Control System 2249
 
  • T. Hakulinen, S. Di Luca, G. Godineau, R. Nunes, G. Smith
    CERN, Meyrin, Switzerland
 
  The old LHC Access Control System (LACS) was based on a single access control solution, which integrated software and hardware into one monolithic application encompassing all the different subsystems (access control, video surveillance, interphones, biometry, equipment control, safety elements). Both the hardware and software were approaching end-of-life by the vendor before the CERN Long Shutdown 2 (LS2). The new design is based on a distributed approach, where the different subsystems are integrated in a flexible manner with well-defined interfaces, which will permit much easier single sub-system management, upgrades, and even full replacements if necessary. From the system point of view, the focus is on the advantages that this redesign brings to system operation, testing, and management. Procedurally the interest is in the overall management of a very complex in-place upgrade of a system, where the new implementation needed to coexist with the old during its constant simultaneous solicitation over the LS2.  
poster icon Poster TUPAB322 [6.906 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB322  
About • paper received ※ 15 May 2021       paper accepted ※ 28 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB323 Modular Type Quick Splicing Method for TPS Beamline Radiation Shielding Hutch 2252
 
  • C.Y. Chang, C.H. Chang, S.H. Chang, C.L. Chen, Y.C. Lin, J.C. Liu, D.G. Liu, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The synchrotron light source is transported to the experimental station through a beamline with specified optics, such as mask, mirror, slit, monochromator. Generally, standard beamline should use solid materials (stainless steel, tungsten, lead, and PE) to block bremsstrahlung and synchrotron radiations, even the neutron. The radiation-shielded hutch surrounds the peripheral area of the beamline with iron and lead panels. It requires blocking the scattering radiation to protect the person against radiation hazards. A modularized radiation shielding hutch includes the frame, wall, and ceiling cover that can assemble on-site through splicing. This method could greatly shorten the installation. Besides, we designed the modular ceiling cover units with a quick mounting/opening function to easily enable the maintenance and installation of large optical components. The details of the concept design for the fixed-point radiation shielding hutch in the TPS beamline are also reported that includes the configurations of the radiation shielding wall panels, frames, and pipes/cables arrangements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB323  
About • paper received ※ 13 May 2021       paper accepted ※ 10 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB324 Real-Time Radiation Monitoring System with Interlock Protection Mechanism in Taiwan Photon Source 2256
 
  • Y.C. Lin, A.Y. Chen, C.-R. Chen, S.J. Huang, S.P. Kao, S.Y. Lin, J.C. Liu, P.J. Wen
    NSRRC, Hsinchu, Taiwan
 
  To ensure radiation safety for personnel working in the facility, the Radiation and Operation Safety Division has installed a real-time radiation monitoring system in the working area to monitor gamma rays and neutrons, for which the annual dosage limit is designed to be less than 1 mSv/year. Considering 2000 working hours for users and staff members, we have derived a control dose rate limit 2 µSv/4h for interlock protection. If the accumulated radiation dose monitored with the system exceeds 2µSv within a 4-h counting interval, the radiation monitoring station sends a signal to the interlock system to stop injection until the next counting period interval. This paper introduces the radiation monitoring system and its related design information in Taiwan Photon Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB324  
About • paper received ※ 14 May 2021       paper accepted ※ 21 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB250 Fire Detection System Reliability Analysis: An Operational Data-Based Framework 4296
 
  • M.M.C. Averna, G. Gai
    CERN, Meyrin, Switzerland
 
  This paper describes a framework developed at CERN, conducting reliability analysis of Safety-Critical Systems (Fire detection and Alarms) based on operational data. It applies Fault-Tree Analysis on maintenance-related data, categorized based on the component on failure. This framework, a tool implemented in Python, accounts for Fire Detection components installed in tunnels and surface buildings (control panels, detectors, etc) and safety functions triggered upon detection (evacuation, alarms to the CERN Fire Brigade, compartmentalization, electrical isolation, etc). The usefulness of the results of this type of analysis is twofold. Firstly, the results are a supporting tool for estimating the yearly availability of Fire Detection Systems in critical facilities, crucial in Capital and Operational Expenditure identification. Additionally, this approach refines the frequency analysis as part of quantitative fire risk assessments performed in the context of the FIRIA (Fire-Induced Radiological Integrated Assessment) Project, launched by CERN in 2018 and aiming at assessing the risk of fire events in experimental facilities with potential radiologic consequences to the public.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB250  
About • paper received ※ 18 May 2021       paper accepted ※ 19 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)