MC4: Hadron Accelerators
A24 Accelerators and Storage Rings, Other
Paper Title Page
MOXC03
The Interstellar Space in an Electrostatic Cryogenic Storage Ring  
 
  • R. von Hahn
    MPI-K, Heidelberg, Germany
 
  Traditionally, particle accelerators have been built to provide increasingly high energies and intensities to reproduce the very first moments of our Universe after the Big Bang to investigate for example the formation of the building blocks of matter. In the last decade, however, the interest also focuses on the formation and dynamics of molecules in the early and today’s Universe, which places completely different demands on particle accelerators. High energies are not needed. Instead, they have to provide near to interstellar conditions such as an ultrahigh vacuum of or less than 1E-14 mbar and cryogenically cooled environments for the stored particles. This allows extremely long observation periods to investigate quantum state properties and opens up completely new insights in different fields of physics. The electrostatic cryogenic storage ring CSR at the Max Planck Institute for Nuclear Physics in Heidelberg was conceived, designed and constructed to achieve these goals and is successfully in operation since 2015. This talk will sum up motivation, design, construction and first results obtained with the CSR, a worldwide unique machine with great new opportunities.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB188 New Method to Search for Axion-Like Particles Demonstrated with Polarized Beam at the COSY Storage Ring 3057
 
  • S. Karanth
    Jagiellonian University, Kraków, Poland
 
  The axion was originally proposed to explain the small size of CP violation in quantum chromodynamics. It might be a candidate for dark matter in the universe. Axions or axion-like particles (ALPs) when coupled to gluons induce an oscillating Electric Dipole Moment (EDM) along the nucleon’s spin direction. At the Cooler Synchrotron (COSY) in Jülich, this principle was used to perform a first test experiment to search for ALPs using an in-plane polarized deuteron beam. If the spin precession frequency equals the EDM oscillation frequency, a resonance occurs that accumulates the rotation of the polarization out of the ring plane. Since the axion frequency is unknown, the beam momentum was ramped to search for a vertical polarization jump that would occur when the resonance is crossed. At COSY, four beam bunches with different polarization directions were used to make sure that no resonance was missed because of the unknown relative phase between the polarization precession and the EDM oscillations. We scanned a frequency window of about a 1-kHz width around the spin precession frequency of 121 kHz. This talk will describe the experiment and show preliminary results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB188  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB189 EIC Hadron Beamline Vacuum Studies 3060
 
  • D. Weiss, M. Mapes, J.E. Tuozzolo, S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Ninety percent of the EIC hadron ring beamline is cold-bore comprising strings of interconnected 4.55 K RHIC superconducting (SC) magnets. The EIC operating specification requires shorter bunches and 3x higher intensity beams which are not appropriate for the present RHIC stainless steel cold-bore beam tube. The intensity and emittance of the hadron beams will degrade due to interactions with residual gas or vacuum instabilities arising from the expected resistive-wall (RW) heating, electron clouds, and beam-induced desorption mechanisms. Without strategies to limit RW heating, major cryogenic system modifications are needed to prevent SC magnet quenches. The SC magnet cold-bore beam tubes will be equipped with a high RRR copper clad stainless steel sleeve to significantly reduce RW heating and so the effect on the SC magnet cryogenic heat load and temperature. A thin amorphous carbon film applied to the beam facing copper surface will suppress electron cloud formation. This paper discusses the vacuum requirements imposed by the EIC hadron beams and the plans to achieve the necessary vacuum and thermal stability that ensure acceptable beam quality and lifetime.
 
poster icon Poster WEPAB189 [3.321 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB189  
About • paper received ※ 17 May 2021       paper accepted ※ 25 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)