Author: Xiao, B.P.
Paper Title Page
MOPAB358 Design and Measurement of the 1.4 GHz Cavity for LEReC Linac 1113
 
  • B.P. Xiao, J.C. Brutus, J.M. Fite, K. Hamdi, D. Holmes, K. Mernick, K.S. Smith, J.E. Tuozzolo, T. Xin, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Low Energy RHIC electron Cooler (LEReC) is the first electron cooler based on rf acceleration of electron bunches. To further improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, a normal conducting RF cavity at 1.4 GHz was designed and fabricated for the LINAC that will provide longer electron bunches for the LEReC. It is a single-cell cavity with an effective cavity length shorter than half of the 1.4 GHz wavelength. This cavity was fabricated and tested on-site at BNL to verify RF properties, i.e. the resonance frequency, FPC coupling strength, tuner system performance, and high power tests. In this paper, we report the RF test results for this cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB358  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB359 Operational Experience and Redesign of the Tuner without Spring Fingers for the LEReC Warm Cavity 1116
 
  • B.P. Xiao, J.M. Brennan, J.C. Brutus, K. Mernick, S. Polizzo, S.K. Seberg, F. Severino, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A folded coaxial tuner without spring fingers was designed for the Low Energy RHIC electron Cooler (LEReC) 2.1 GHz warm cavity. During RHIC run 2019, this tuner was found to cause cavity trips via different failure modes. After analyzing these failure modes, a new straight coaxial tuner without spring fingers was proposed and was installed. We show the operational experience of the new tuner in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB359  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB360 Anomalous Skin Effect Study of Normal Conducting Film 1119
 
  • B.P. Xiao, M. Blaskiewicz, T. Xin
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
For the radiofrequency (RF) applications of normal conducting film with large mean free path at high frequency and low temperature, the anomalous skin effect differs considerably from the normal skin effect with field decaying exponentially in the film. Starting from the relationship between the current and the electric field (E field) in the film, the amplitude of E field along the film depth is calculated, and is found to be non-monotonic. The surface impedance is found to have a minimum value at certain film thickness.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB360  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB006 EIC Crab Cavity Multipole Analysis 2589
 
  • Q. Wu, Y. Luo, B.P. Xiao
    BNL, Upton, New York, USA
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • J.A. Mitchell
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Crab cavities are specialized RF devices designed for colliders targeting high luminosities. It is a straightforward solution to retrieve head-on collision with crossing angle existing to fast separate both beams after collision. The Electron Ion Collider (EIC) has a crossing angle of 25 mrad, and will use local crabbing to minimize the dynamic aperture requirement throughout the rings. The current crab cavity design for the EIC lacks axial symmetry. Therefore, their higher order components of the fundamental deflecting mode have a potential of affecting the long-term beam stability. We present here the multipole analysis and preliminary particle tracking results from the current crab cavity design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB006  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB193 Optimization of the Hadron Ring Stripline Injection Kicker for the EIC 3073
 
  • M.P. Sangroula, C.J. Liaw, C. Liu, N. Tsoupas, B.P. Xiao, W. Zhang
    BNL, Upton, New York, USA
  • X. Sun
    ANL, Lemont, Illinois, USA
  • S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Electron-Ion Collider (EIC) at Brookhaven National Laboratory is a high luminosity, (  ∼  1034  \textrm{cm}-2 \textrm{s}-1 ) accelerator facility colliding polarized electron beam with different ion species ranging from lighter nuclei (proton, deuterium) to heavier nuclei (gold, uranium). Design of a stripline injection kicker for the Hadron Storage Ring (HSR) of EIC for beams with the rigidity of  ∼  81 T-m poses some technical challenges due to expected shorter bunch spacing and higher peak current of EIC. This paper focuses on the optimization of the EIC hadron ring injection kicker. Starting from the 2D cross-section design which includes the selection of electrodes shape, we describe the optimization of the kicker’s cross-section. Then we discuss converting this 2D geometry to 3D by adding essential components for the stripline kicker and the 3D optimization techniques that we employed. Finally, we show simulation results for the optimized geometry including wakefields and Time Domain Reflection (TDR) from one feedthrough to another.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB193  
About • paper received ※ 21 May 2021       paper accepted ※ 28 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)