Author: Williams, O.
Paper Title Page
MOPAB137 Interaction Region Design for DWA Experiments at FACET-II 478
 
  • O. Williams, G. Andonian, A. Fukasawa, W.J. Lynn, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, Y. Sakai, M. Yadav, Y. Zhuang
    UCLA, Los Angeles, USA
  • C.I. Clarke, M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: DOE HEP Grant DE-SC0009914
The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB147 Efficient, High Power Terahertz Radiation Outcoupling From a Beam Driven Dielectric Wakefield Accelerator 513
 
  • M. Yadav, G. Andonian, C.E. Hansel, W.J. Lynn, N. Majernik, B. Naranjo, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by DE-SC0009914 (UCLA) and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
Wakefields in dielectric structures are a useful tool for beam diagnostics and manipulation with applications including acceleration, shaping, chirping, and THz radiation generation. It is possible to use the produced THz radiation to diagnose the fields produced during the DWA interaction but, to do so, it is necessary to effectively out-couple this radiation to free space for transport to diagnostics such as a bolometer or interferometer. To this end, simulations have been conducted using CST Studio for a 10 GeV beam with FACET-II parameters in a slab-symmetric, dielectric waveguide. Various termination geometries were studied including flat cuts, metal horns, and the "Vlasov antenna". Simulations indicate that the Vlasov antenna geometry is optimal and detailed studies were conducted on a variety of dielectrics including quartz, diamond, and silicon. Multiple modes were excited and coherent Cherenkov radiation (CCR) was computationally generated for both symmetric and asymmetric beams. Finally, we include witness beams to study transport and acceleration dynamics as well as the achievable field gradients.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB147  
About • paper received ※ 24 May 2021       paper accepted ※ 29 August 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB148 Liénard-Wiechert Numerical Radiation Modeling for Plasma Acceleration Experiments at FACET-II 517
 
  • M. Yadav, G. Andonian, C.E. Hansel, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, O. Williams, Y. Zhuang
    UCLA, Los Angeles, USA
  • G. Andonian
    RadiaBeam, Marina del Rey, California, USA
  • O. Apsimon, A. Perera, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • O. Apsimon, A. Perera, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by DE-SC0009914 (UCLA) and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
Future plasma acceleration experiments at FACET-II will measure betatron radiation in order to provide single-shot non-destructive beam diagnostics. We discuss three models for betatron radiation: a new idealized particle tracking code with Liénard-Wiechert radiation, a Quasi-Static Particle-in-Cell (PIC) code with Liénard-Wiechert radiation, and a full PIC code with radiation computed via a Monte-Carlo QED Method. Predictions of the three models for the E-310 experiment are presented and compared. Finally, we discuss beam parameter reconstruction from the double differential radiation spectrum.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB148  
About • paper received ※ 24 May 2021       paper accepted ※ 01 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB092 Demonstration FELs Using UC-XFEL Technologies at the SAMURAI Laboratory 1592
 
  • N. Majernik, G. Andonian, O. Camacho, A. Fukasawa, G.E. Lawler, W.J. Lynn, B. Naranjo, J.B. Rosenzweig, Y. Sakai, O. Williams
    UCLA, Los Angeles, California, USA
  • R. Robles
    SLAC, Menlo Park, California, USA
 
  Funding: DOE HEP Grant DE-SC0020409, National Science Foundation Grant No. PHY-1549132
The ultra-compact x-ray free-electron laser (UC-XFEL), described in [J. B. Rosenzweig, et al. 2020 New J. Phys. 22 093067], combines several cutting edge beam physics techniques and technologies to realize an x-ray free electron laser at a fraction of the cost and footprint of existing XFEL installations. These elements include cryogenic, normally conducting RF structures for both the gun and linac, IFEL bunch compression, and short-period undulators. In this work, several stepping-stone, demonstrator scenarios under discussion for the UCLA SAMURAI Laboratory are detailed and simulated, employing different subsets of these elements. The cost, footprint, and technology risk for these scenarios are considered in addition to the anticipated engineering and physics experience gained.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB092  
About • paper received ※ 19 May 2021       paper accepted ※ 11 August 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB051 Beam Dynamics for a High Field C-Band Hybrid Photoinjector 2714
 
  • L. Faillace, F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • M. Behtouei, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National Committee V through the ARYA project.
In this paper, we present a new class of a hybrid photoinjector in C-Band. This project is the effort result of a UCLA/Sapienza/INFN-LNF/SLAC/RadiaBeam collaboration. This device is an integrated structure consisting of an initial standing-wave 2.5-cell gun connected to a traveling-wave section at the input coupler. Such a scheme nearly avoids power reflection back to the klystron, removing the need for a high-power circulator. It also introduces strong velocity bunching due to a 90° phase shift in the accelerating field. A relatively high cathode electric field of 120 MV/m produces a ~4 MeV beam with ~20 MW input RF power in a small foot-print. The beam transverse dynamics are controlled with a ~0.27 T focusing solenoid. We show the simulation results of the RF/magnetic design and the optimized beam dynamics that shows 6D phase space compensation at 250 pC. Proper beam shaping at the cathode yields a ~0.5 mm-mrad transverse emittance. A beam waist occurs simultaneously with a longitudinal focus of <400 fs rms and peak current >600 A. We discuss application of this injector to an Inverse-Compton Scattering system and present corresponding start-to-end beam dynamics simulations.
 
poster icon Poster WEPAB051 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB051  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB056 Advanced Photoinjector Development at the UCLA SAMURAI Laboratory 2728
 
  • A. Fukasawa, G. Andonian, O. Camacho, C.E. Hansel, G.E. Lawler, W.J. Lynn, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, Y. Sakai, O. Williams
    UCLA, Los Angeles, California, USA
  • Z. Li, R. Robles, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • J.I. Mann
    PBPL, Los Angeles, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was supported by the US Department of Energy under the contract No. DE-SC0017648, DE-SC0009914, and DE-SC0020409, and by National Science Foundation Grant No. PHY-1549132
UCLA has recently constructed SAMURAI, a new radiation bunker and laser infrastructure for advanced accelerator research. In its first phase, we will build a 30 MeV photoinjector with an S-band hybrid gun. The beam dynamics simulation for this beamline showed the generation of the beam with the emittance 2.4 um and the peak current 270 A. FIR-FEL experiments are planned in this beamline. The saturation peak power was expected at 170 MW.
 
poster icon Poster WEPAB056 [0.939 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB056  
About • paper received ※ 28 May 2021       paper accepted ※ 01 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB071 Physics Goals of DWA Experiments at FACET-II 3922
 
  • J.B. Rosenzweig, H.S. Ancelin, G. Andonian, A. Fukasawa, C.E. Hansel, G.E. Lawler, W.J. Lynn, N. Majernik, J.I. Mann, P. Manwani, Y. Sakai, O. Williams, M. Yadav
    UCLA, Los Angeles, California, USA
  • S.V. Baryshev
    Michigan State University, East Lansing, Michigan, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DOE HEP Grant DE-SC0009914,
The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071  
About • paper received ※ 25 May 2021       paper accepted ※ 28 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB269 Compton Spectrometer for FACET-II 4332
 
  • B. Naranjo, G. Andonian, A. Fukasawa, W.J. Lynn, N. Majernik, J.B. Rosenzweig, Y. Sakai, O. Williams, M. Yadav, Y. Zhuang
    UCLA, Los Angeles, USA
 
  Funding: DARPA GRIT Contract 20204571, DOE HEP Grant DE-SC0009914
We present the design of a Compton spectrometer for use at FACET-II. A sextupole is used for magnetic spectral analysis, giving a broad dynamic range (180 keV through 28 MeV) and the capability to capture an energy-angular double-differential spectrum in a single shot. At low gamma energies, below 1 MeV, Compton spectroscopy becomes increasingly challenging as the scattering cross-section becomes more isotropic. To extend the range of the spectrometer down to around 180 keV, we use a 3D-printed tungsten collimator at the detector plane to preferentially select forward-scattered electrons at the Compton edge.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB269  
About • paper received ※ 20 May 2021       paper accepted ※ 22 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB270 Pair Spectrometer for FACET-II 4336
 
  • B. Naranjo, G. Andonian, A. Fukasawa, N. Majernik, M.H. Oruganti, J.B. Rosenzweig, Y. Sakai, O. Williams, M. Yadav
    UCLA, Los Angeles, California, USA
  • N. Cavanagh, G. Sarri
    Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
  • A. Di Piazza, C.H. Keitel
    MPI-K, Heidelberg, Germany
  • E. Gerstmayr, S. Meuren, D.A. Reis, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • C. Nielsen
    AU, Aarhus, Denmark
 
  Funding: DARPA GRIT Contract 20204571, DOE HEP Grant DE-SC0009914
We present the design of a pair spectrometer for use at FACET-II, where there is a need for spectroscopy of photons having energies up to 10 GeV. Incoming gammas are converted to high-energy positron-electron pairs, which are then subsequently analyzed in a dipole magnet. These charged particles are then recorded in arrays of acrylic Cherenkov counters, which are significantly less sensitive to background x-rays than scintillator counters in this case. To reconstruct energies of single high-energy photons, the spectrometer has a sensitivity to single positron-electron pairs. Even in this single-photon limit, there is always some low-energy continuum present, so spectral deconvolution is not trivial, for which we demonstrate a maximum likelihood reconstruction. Finally, end-to-end simulations of experimental scenarios, together with anticipated backgrounds, are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB270  
About • paper received ※ 20 May 2021       paper accepted ※ 28 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)