Author: Wang, J.Q.
Paper Title Page
MOPAB053 Progress of Lattice Design and Physics Studies on the High Energy Photon Source 229
 
  • Y. Jiao, Y. Bai, X. Cui, C.C. Du, Z. Duan, Y.Y. Guo, P. He, X.Y. Huang, D. Ji, H.F. Ji, S.C. Jiang, B. Li, C. Li, J.Y. Li, N. Li, X.Y. Li, P.F. Liang, C. Meng, W.M. Pan, Y.M. Peng, Q. Qin, H. Qu, S.K. Tian, J. Wan, B. Wang, J.Q. Wang, N. Wang, Y. Wei, G. Xu, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: Work supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure and NSFC (11922512)
The High Energy Photon Source (HEPS) is a 34-pm, 1360-m storage ring light source being built in the suburb of Beijing, China. The HEPS construction started in mid-2019. While the physics design has been basically determined, modifications on the HEPS accelerator physics design have been made since 2019, in order to deal with challenges emerging from the technical and engineering designs. In this paper, we will introduce the new storage ring lattice and injector design, and also present updated results of related physics issues, including impedance and collective effects, lattice calibration, insertion device effects, injection design studies, etc.
 
poster icon Poster MOPAB053 [0.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053  
About • paper received ※ 10 May 2021       paper accepted ※ 24 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB222 Impedance Evaluation of Masks in the HEPS Storage Ring 3145
 
  • N. Wang, S.K. Tian, J.Q. Wang
    IHEP, Beijing, People’s Republic of China
  • J.Q. Wang
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  Masks are commonly used in photon light sources to protect sensitive elements from synchrotron radiations. In the ultra-low emittance rings, small aperture vacuum chambers are adopted in order to reach the very high gradient in the quadrupoles, while many masks are required due to the high radiation power density. Therefore, the impedance of the masks becomes one of the dominant contributors to the impedance budget. In this paper, the impedance is evaluated among different mask designs. Meanwhile, the impedance cross-talk between adjacent masks is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB222  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)