Author: Tsai, C.-Y.
Paper Title Page
MOPAB056 Optimization of a TBA with Stable Optics and Minimal Longitudinal Dispersion and CSR-Induced Emittance Growth 241
 
  • C. Zhang, Y. Jiao
    IHEP, Beijing, People’s Republic of China
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
 
  Funding: National Natural Science Foundation of China (No. 11922512), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. Y201904), National Key R&D Program of China (No. 2016YFA0401900)
In the beam transfer line which often consists of dipoles to deflect the beam trajectory, longitudinal dispersion effect and emission of coherent synchrotron radiation (CSR) will lead to beam phase space distortion, thus degrading the machine performance. In this study, optimizations of a triple-bend achromat (TBA) cell are conducted using the multi-objective particle swarm optimization (MOPSO) method to suppress the CSR-induced emittance growth and minimize the longitudinal dispersion functions up to high orders, simultaneously. For the longitudinal dispersion function, results of three optimization settings are reported, which makes the TBA design first-order, second-order, and higher-order isochronous. Furthermore, we study the shortest possible beamline length of the higher-order isochronous TBA design, which may pave the way to designing a more compact beam transfer line.
 
poster icon Poster MOPAB056 [0.366 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB056  
About • paper received ※ 12 May 2021       paper accepted ※ 28 May 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB245 Theoretical Analysis of the Conditions for an Isochronous and CSR-Immune Triple-Bend Achromat with Stable Optics 786
 
  • C. Zhang, Y. Jiao
    IHEP, Beijing, People’s Republic of China
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
 
  Funding: National Natural Science Foundation of China (No. 11922512), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. Y201904), National Key R&D Program of China (No. 2016YFA0401900)
Transport of high-brightness beams with minimum degradation of the phase space quality is pursued in modern accelerators. For the beam transfer line which commonly consists of bending magnets, it would be desirable if the transfer line can be isochronous and coherent synchrotron radiation (CSR)-immune. For multi-pass transfer line, the achromatic cell designs with stable optics would bring great convenience. In this paper, based on the transfer matrix formalism and the CSR point-kick model, we report the detailed theoretical analysis and derive the condition for a triple-bend achromat with stable optics in which the first-order longitudinal dispersion (i.e., R56) and the CSR-induced emittance growth can be eliminated. The derived condition suggests a new way of designing the bending magnet beamline that can be applied to the free-electron laser (FEL) spreader and energy recovery linac (ERL) recirculation loop.
 
poster icon Poster MOPAB245 [0.530 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB245  
About • paper received ※ 12 May 2021       paper accepted ※ 08 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA04 Microbunching Instability in the Presence of Intrabeam Scattering for Single-Pass Accelerators 3692
 
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
  • W. Qin
    Lund University, Lund, Sweden
 
  Funding: This work is supported by the Fundamental Research Funds for the Central Universities under Project No. 5003131049 and National Natural Science Foundation of China under project No. 11905073.
Intrabeam scattering (IBS) has long been studied in lepton or hadron storage rings as a slow diffusion process, while the effects of IBS on single-pass or recirculating electron accelerators have drawn attention only in the recent two decades due to the emergence of linac-based or ERL-based 4th-generation light sources, which require high-quality electron beams during the beam transport. Recent experimental measurements indicate that in some parameter regimes, IBS can have a significant influence on microbunched beam dynamics. Here we develop a theoretical formulation* of microbunching instability (MBI) in the presence of IBS for single-pass accelerators. We start from the Vlasov-Fokker-Planck (VFP) equation, combining both collective longitudinal space charge and incoherent IBS effects. The linearized VFP equation with the corresponding coefficients is derived. The evolutions of the phase space density and energy modulations are formulated as a set of coupled integral equations. The formulation** is then applied to a simplified single-pass transport line. The results from the semi-analytical calculation are compared and show good agreement with particle tracking simulations.
* C.-Y. Tsai et al., Phys. Rev. Accel. Beams 23, 124401 (2020)
** C.-Y. Tsai and W. Q, Phys. Plasmas (2021), accepted for publication
 
slides icon Slides THXA04 [2.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXA04  
About • paper received ※ 13 May 2021       paper accepted ※ 19 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)