Author: Spiller, P.J.
Paper Title Page
MOPAB175 Advanced Concepts and Technologies for Heavy Ion Synchrotrons 594
 
  • P.J. Spiller, O. Boine-Frankenheim, L.H.J. Bozyk, S. Klammes, H. Kollmus, D. Ondreka, I. Pongrac, N. Pyka, C. Roux, K. Sugita, St. Wilfert, T. Winkler, D.F.A. Winters
    GSI, Darmstadt, Germany
 
  New concepts and technologies are developed to advance the performance of heavy ion synchrotrons. Besides fast ramping of superconducting magnets, extreme UHV technologies to stabilize dynamic vacuum and charge related loss, broad band MA cavities, space charge compensation by means of electron lenses and new cooling technologies, e.g. laser cooling, show great promise to advance the forefront of beam parameters. Several of these technologies and concepts are developed and tested at GSI/FAIR. Progress and plans will be reported.  
poster icon Poster MOPAB175 [1.367 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB175  
About • paper received ※ 11 May 2021       paper accepted ※ 21 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB200 Status of the Electron Lens for Space Charge Compensation in SIS18 1880
 
  • K. Schulte-Urlichs, S. Artikova, D. Ondreka, P.J. Spiller
    GSI, Darmstadt, Germany
  • P. Apse-Apsitis, I. Steiks
    Riga Technical University, Riga, Latvia
  • M. Droba, O. Meusel, H. Podlech, K.I. Thoma
    IAP, Frankfurt am Main, Germany
 
  At GSI a project has been initiated to investigate the option of space charge compensation (SCC) by use of an electron lens in order to overcome space charge (SC) limits in the synchrotrons SIS18 and SIS100 for the Facility for Antiproton and Ion Research (FAIR). The repeated crossing of resonance lines due to the synchrotron motion in bunched beams is considered one of the main drivers of SC induced beam loss in the synchrotrons. Electron lenses provide a compensation of ion beam SC by virtue of their negative charge interacting with the ions in the overlap region while a time-varying compensation can be achieved by the modulation of the electron beam. In order to demonstrate space charge compensation of bunched ion beams, an electron lens is under development for the application in SIS18. In this contribution, the status of the electron lens design will be reported putting special emphasis on its main components: the RF modulated electron gun, that is being developed within an ARIES collaboration, and the magnet system.  
poster icon Poster TUPAB200 [1.869 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB200  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB372 Status of the Quadrupole Doublet Module Series Manfacturing 2388
 
  • T. Winkler, A. Bleile, L.H.J. Bozyk, V.I. Datskov, J. Ketter, P. Kowina, J.P. Meier, N. Pyka, C. Roux, P.J. Spiller, K. Sugita, A. Waldt, St. Wilfert
    GSI, Darmstadt, Germany
 
  The 83 Quadrupole Doublet Modules (QDM) for the heavy-ion-synchrotron SIS100 of the FAIR project at GSI are highly integrated cryogenic modules containing multiple magnets. Each of eleven different QDM types consists of two units, where one unit consists of one quadrupole magnet as well as corrector magnets depending on the modules position in the accelerator Ion-Optical Lattice. Additionally, the QDMs contain cryogenic collimators, beam diagnostics, as well as cryogenic UHV beam pipes. The modules contain parts from multiple suppliers increasing the logistics behinds the QDMs design further. We present the process of the module integration, give details on the current integration status and present an outlook on the timeline for the QDM integration planning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB372  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB378 Superconducting Dipole Magnets for the SIS100 Synchrotron 2401
 
  • F. Kaether, P. Aguar Bartolome, A. Bleile, G. Golluccio, J. Ketter, P. Kosek, F. Kurian, V. Marusov, J.P. Meier, S.S. Mohite, C. Roux, P.J. Spiller, K. Sugita, A. Szwangruber, P.B. Szwangruber, A. Warth, H.G. Weiss
    GSI, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) is currently under construction at GSI Darmstadt, Germany. For its main accelarator, the SIS100 synchrotron, 110 superconducting dipole magnets has been produced and extensively tested. The fast-ramped Nuclotron-type superferric dipoles were manufactured with high effort regarding a precise magnetic field which could be proven by magnetic field measurements with high accuracy. Stable operation conditions at 4.5 K were achieved including an excellent quench behaviour and precise geometrical and electrical properties. An overview on design, production, operation, tests and measurement results will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB378  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB380 Testing of the First of Series Quadrupole Doublet Module for the SIS100 Synchrotron 2409
 
  • P. Aguar Bartolome, M. Al Ghanem, M. Becker, A. Bleile, R. Bluemel, L.H.J. Bozyk, V.I. Datskov, W. Freisleben, A. Kario, P. Kowina, K.K. Kozlowski, F. Kurian, S. Lindner, J.P. Meier, T. Miertsch, S.S. Mohite, V.P. Plyusnin, I. Pongrac, C. Roux, C. Schroeder, P.J. Spiller, K. Sugita, A. Szwangruber, P.B. Szwangruber, F. Walter, H. Welker, St. Wilfert, T. Winkler, S. Zeller
    GSI, Darmstadt, Germany
 
  A new international facility for antiproton and ion research (FAIR) is currently under construction in Darmstadt, Germany. The high intensity primary beam required for different research experiments will be provided by the SIS100 heavy ion synchrotron. The synchrotron is composed of fast cycling superconducting magnets from which about 300 will be integrated in Quadrupole Doublet Modules (QDM). Each module consists of two units composed of a quadrupole and corrector magnets. The First of Series Quadrupole Doublet Module was delivered to the test facility at GSI in November 2019. The assembled doublet was subjected to a dedicated test program to verify the functionality of the module components at cryogenic temperature and operating conditions. The results obtained during the testing campaign will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB380  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB391 Cryopanels in the Room Temperature Heavy Ion Synchrotron SIS18 2435
 
  • S. Aumüller, L.H.J. Bozyk, P.J. Spiller
    GSI, Darmstadt, Germany
  • K. Blaum
    MPI-K, Heidelberg, Germany
 
  The FAIR complex at the GSI Helmholtzzentrum will generate heavy ion beams of ultimate intensities. To achieve this goal, medium charge states have to be used. However, the probability for charge exchange in collisions with residual gas particles of such ions is much higher than for higher charge states. In order to lower the residual gas density to extreme high vacuum conditions, 65% of the circumference of SIS18 are already coated with NEG, which provides high and distributed pumping speed. Nevertheless, nobel and nobel-like components, which have very high ionization cross sections, do not get pumped by this coating. A cryogenic environment at moderate temperatures, i.e. at 50-80K, provides high pumping speed for all heavy residual gas particles. The only typical residual gas species, that cannot be pumped at this temperature is hydrogen. With an additional NEG coating the pumping will be optimized for all residual gas particles. The installation of cryogenic surfaces in the existing room temperature synchrotron SIS18 at GSI has been investigated. A prototype quadrupole chamber with cryogenic surfaces, first measurements, and simulations of the adapted accelerator are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB391  
About • paper received ※ 19 May 2021       paper accepted ※ 31 August 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB355 Series Production of the SIS100 Cryocatchers 3529
 
  • L.H.J. Bozyk, S. Ahmed, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The superconducting heavy ion synchrotron SIS100, which is the main accelerator of the FAIR-facility will be equipped with cryocatcher to suppress dynamic vacuum effects and to assure a reliable operation of high intensity heavy-ion beams. Subsequent to the successful validation of the prototype in 2011 as well as a First-of-Series cryocatcher, the series production of 60 cryocatcher modules meanwhile has been completed. It was released in 2018 after further design optimizations. Key findings from the series production and acceptance tests are presented as well. The First-of-Series cryocatcher has been integrated into the First-of-Series quadrupole module and has undergone several tests. These results are also illustrated in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB355  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB384 Design and Beam Dynamics of the Electron Lens for Space Charge Compensation in SIS18 3614
 
  • S. Artikova, D. Ondreka, K. Schulte-Urlichs, P.J. Spiller
    GSI, Darmstadt, Germany
 
  An electron lens for space charge compensation is being developed at GSI to increase the ion beam intensities in SIS18 for the FAIR project. It uses an electron beam of 10A maximum current at 30keV. The maximum magnetic field on-axis is 0.6T, considerably higher than the field of the existing electron cooler. The magnetic system of the lens consists of solenoids and toroids. The toroids’ vertical field component creates a significant horizontal orbit deflection in the circulating low rigidity ion beam. To correct this deflection, four correction dipoles have been introduced. As common for electron lenses, the high-power electron beam is not dumped at ground potential, but rather in a collector with a small bias potential with respect to the cathode. The present design foresees a collector at -27kV, leading to a power dissipation of 30kW, distributed over a large surface area by placing the collector in an appropriately shaped magnetic field of a pre-collector solenoid. This contribution reports on the design of the lens and presents the results of beam transport simulations for the electron beam (with space charge) and a representative ion beam, performed using the 3D CST STUDIO.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB384  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB157 Studying X-Ray Spectra of the SIS18 Electrostatic Septa to Measure Their Electric Field 4065
 
  • B. Gålander, E. Kozlova, D. Ondreka, A. Sokolov, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt, Germany
 
  The synchrotron SIS18 at GSI uses resonant extraction for slow beam extraction on the order of seconds. For some time, there has been an unexplained discrepancy of the slow extraction with a lower extraction efficiency than expected at the highest beam energies. Recent machine studies have indicated that the deflection by the electrostatic septum might be less than the nominal 2.5 mrad, leading to increased losses at the magnetic septum. In this paper, we pursue an idea to directly measure the voltage of the electrode gap by utilizing the fact that dark current electrons accelerated in the gap of the electrostatic extraction septum generate Bremsstrahlung X-rays when hitting the anode. The high-energy cut-off of the X-ray spectra then corresponds to the voltage of the electrode gap. Measurements of the X-ray spectra at the extraction septum of SIS18 have been performed using a solid-state CdTe detector. This technique provides an in-situ measurement of the voltage applied to the electrostatic extraction channel and has proven to be a useful diagnostics tool.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB157  
About • paper received ※ 19 May 2021       paper accepted ※ 02 September 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB356 Progress and Status on Civil Construction of the SIS100 Accelerator Building 4493
 
  • M. Draisbach, N. Pyka, P.J. Spiller
    GSI, Darmstadt, Germany
  • J. Blaurock, M. Ossendorf
    FAIR, Darmstadt, Germany
 
  Besides the accelerator machine itself, civil construction of the accelerator ring tunnel building in the northern area of the FAIR campus is a core activity of the rapidly progressing FAIR project. It will facilitate and supply the future SIS100 accelerator at 17m underground level and has been growing continuously and according to schedule since groundbreaking in 2017. This contribution presents the current status of the civil construction progress and gives an optimistic forecast for the preparation of machine installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB356  
About • paper received ※ 20 May 2021       paper accepted ※ 06 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)