

Status of the Electron Lens for Space Charge Compensation in SIS18 TUPAB200

S. Artikova, D. Ondreka, <u>K. Schulte-Urlichs</u>, P. Spiller (GSI) M. Droba, O. Meusel, H. Podlech, K. Thoma (GUF) P. Apse-Apsitis, I. Steiks (RTU)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.

Intensity Increase of Primary Hadron Beams

Physics Case

- Goal: Intensity increase of heavy ions to enhance physics potential for FAIR
- Challenge: Intensity limited by repulsive Coulomb force between ions (space charge)
- Solution: Pulsed electron lens matching ion bunch profile to compensate space charge

Critical Components

- High-current electron gun with RF modulation to create pulsed e-beam
- Compact high quality magnets providing longitudinal field for e-beam confinement
- Instrumentation for diagnostic of overlap

Collaborations

- ARIES WP16 (EU project) for manufacturing of gun among GSI, IAP, CERN, Riga TU
- Cooperation between IAP and SIS100/SIS18

Primary Beam Intensities at GSI and FAIR							
		р	Ar	Xe	U		
Charge number	GSI	1	18	48	73		
	FAIR	1	10	21	28		
Energy [GeV/u]	GSI	4.7	1.7	1.3	1.0		
	FAIR	28.8	6.6	4.0	2.7		
Intensity [Ions/s]	GSI	1011	8·10 ¹⁰	2·10 ¹⁰	4·10 ⁹		
	FAIR	10 ¹³	10 ¹²	5·10 ¹¹	3·10 ¹¹		

space charge limit dynamic vacuum

Requirements for SIS18 Demonstrator Lens

ion beam profile

Requirements					
Peak electron current	10 A				
Extraction voltage	30 kV				
Magnetic field	0.6 T				
Interaction length	3.36 m				
Horizontal beam radius	35 mm				
Vertical beam radius	20 mm				
Min. modulation frequency	0.4 MHz				
Max. modulation frequency	1 MHz				
Modulation bandwidth	10 MHz				

varying bunch length

Electron Lens Design Status

Electron Lens Design Status

Dipole Correctors

vertical magnetic field on ion path

Collector Design

- Layout of major magnets completed
 - Toroids
 - Solenoids
 - Ion beam orbit correctors
- Preliminary collector design
- Electron beam transport simulations
 ongoing

A more detailed presentation of the electron lens design and beam dynamics will be given by S. Artikova (**WEPAB384**).

Conceptual Design of E-Gun

Electron Gun					
Cathode radius R _c [mm]	26.5 mm				
Anode voltage U _A	25 – 30 kV				
Magnetic field	0.6 T				
Distance cathode to anode d _{ca}	20 mm				
Max. extracted beam current I _{max}	10 A				
Max. grid voltage U _{g.max}	3 kV				
Grid capacity C _q	~75 pF				
Distance cathode to grid d _{cq}	3 mm				

Actual Status of E-Gun Development TE² Tungsten Electron Emitter Gun

Experiments at GUF to test Tungsten Cathode Heating

- direct heating by arc discharge
- heat transfer investigations for different material types
- vacuum separation between generator and extractor
- pyrometric measurements could confirm required heating temperatures
- required vacuum conditions and cooling performance could be confirmed

TE²-Gun has a robust and flexibel design.

Conceptual Design of Power Modulator

Tested Design Stages

Power Modulator				
Arbitrary waveform	e.g. Gaussian			
Modulation voltage, peak-to-peak	0 - 3200 V			
Waveform frequency sweep	400 - 1000 kHz			
Waveform frequency sweep	~ 150 ms			
period				
Modulation bandwidth	10 MHz			
Amplitude compression ratio	0.4 - 1			
during the frequency sweep				
Grid-cathode capacitance	100 - 125 pF			
(measured)				

Design and Construction by P. Apse-Apsitis et al., RTU

Layout of Test Bench at Goethe University of Frankfurt

High Voltage Terminal

Status of Test Bench Preparation

electrical circuit diagram

Preparation of Extended Test Bench (Phase 2)

PhD Thesis, K. Thoma, GUF

