Author: Smith, K.S.
Paper Title Page
MOPAB358 Design and Measurement of the 1.4 GHz Cavity for LEReC Linac 1113
 
  • B.P. Xiao, J.C. Brutus, J.M. Fite, K. Hamdi, D. Holmes, K. Mernick, K.S. Smith, J.E. Tuozzolo, T. Xin, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Low En­ergy RHIC elec­tron Cooler (LEReC) is the first elec­tron cooler based on rf ac­cel­er­a­tion of elec­tron bunches. To fur­ther im­prove RHIC lu­mi­nos­ity for heavy ion beam en­er­gies below 10 GeV/nu­cleon, a nor­mal con­duct­ing RF cav­ity at 1.4 GHz was de­signed and fab­ri­cated for the LINAC that will pro­vide longer elec­tron bunches for the LEReC. It is a sin­gle-cell cav­ity with an ef­fec­tive cav­ity length shorter than half of the 1.4 GHz wave­length. This cav­ity was fab­ri­cated and tested on-site at BNL to ver­ify RF prop­er­ties, i.e. the res­o­nance fre­quency, FPC cou­pling strength, tuner sys­tem per­for­mance, and high power tests. In this paper, we re­port the RF test re­sults for this cav­ity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB358  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB359 Operational Experience and Redesign of the Tuner without Spring Fingers for the LEReC Warm Cavity 1116
 
  • B.P. Xiao, J.M. Brennan, J.C. Brutus, K. Mernick, S. Polizzo, S.K. Seberg, F. Severino, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A folded coax­ial tuner with­out spring fin­gers was de­signed for the Low En­ergy RHIC elec­tron Cooler (LEReC) 2.1 GHz warm cav­ity. Dur­ing RHIC run 2019, this tuner was found to cause cav­ity trips via dif­fer­ent fail­ure modes. After an­a­lyz­ing these fail­ure modes, a new straight coax­ial tuner with­out spring fin­gers was pro­posed and was in­stalled. We show the op­er­a­tional ex­pe­ri­ence of the new tuner in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB359  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB385 An Overview of RF Systems for the EIC 1179
 
  • R.A. Rimmer, J.P. Preble
    JLab, Newport News, Virginia, USA
  • K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under DOE Contract No. DE-SC0012704, by Jefferson Science Associates under contract DE-SC0002769, and by SLAC under Contract No. DE-AC02-76SF00515.
The Elec­tron Ion Col­lider (EIC) to be con­structed at Brookhaven Na­tional Lab­o­ra­tory in the USA will be a com­plex sys­tem of ac­cel­er­a­tors pro­vid­ing high lu­mi­nos­ity, high po­lar­iza­tion, vari­able cen­ter of mass en­ergy col­li­sions be­tween elec­trons and pro­tons or ions. To achieve this a va­ri­ety of RF sys­tems are re­quired. They must pro­vide for cap­ture, for­ma­tion and stor­age of Am­pere-class beams in the elec­tron and hadron stor­age rings (ESR and HSR), fast ac­cel­er­a­tion of high-charge po­lar­ized elec­tron bunches in the rapid cy­cling syn­chro­tron (RCS), pro­vi­sion of cold high cur­rent elec­tron bunches in the high-en­ergy cooler ERL and pre­cise high-gra­di­ent crab­bing of elec­trons and hadrons ei­ther side of the in­ter­ac­tion point. The chal­lenges in­clude strong HOM damp­ing in the stor­age ring cav­i­ties and cooler ERL, very high fun­da­men­tal mode power in the ESR and cooler in­jec­tor, ex­tremely sta­ble low-noise op­er­a­tion of the crab cav­i­ties, mit­i­ga­tion of tran­sient beam load­ing from gaps, and op­er­at­ing over a wide range of en­er­gies and beam cur­rents. We de­scribe the high-level sys­tem pa­ra­me­ters and prin­ci­pal de­sign choices made and progress on the R&D plan to de­velop these state of the art sys­tems.
 
poster icon Poster MOPAB385 [1.268 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB385  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB002 The Interaction Region of the Electron-Ion Collider EIC 2574
 
  • H. Witte, J. Adam, M. Anerella, E.C. Aschenauer, J.S. Berg, M. Blaskiewicz, A. Blednykh, W. Christie, J.P. Cozzolino, K.A. Drees, D.M. Gassner, K. Hamdi, C. Hetzel, H.M. Hocker, D. Holmes, A. Jentsch, A. Kiselev, P. Kovach, H. Lovelace III, Y. Luo, G.J. Mahler, A. Marone, G.T. McIntyre, C. Montag, R.B. Palmer, B. Parker, S. Peggs, S.R. Plate, V. Ptitsyn, G. Robert-Demolaize, C.E. Runyan, J. Schmalzle, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, F.J. Willeke, Q. Wu, Z. Zhang
    BNL, Upton, New York, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, M.L. Stutzman, W. Wittmer
    JLab, Newport News, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
This paper pre­sents an overview of the In­ter­ac­tion Re­gion (IR) de­sign for the planned Elec­tron-Ion Col­lider (EIC) at Brookhaven Na­tional Lab­o­ra­tory. The IR is de­signed to meet the re­quire­ments of the nu­clear physics com­mu­nity *. The IR de­sign fea­tures a ±4.5 m free space for the de­tec­tor; a for­ward spec­trom­e­ter mag­net is used for the de­tec­tion of hadrons scat­tered under small an­gles. The hadrons are sep­a­rated from the neu­trons al­low­ing de­tec­tion of neu­trons up to ±4 mrad. On the rear side, the elec­trons are sep­a­rated from pho­tons using a weak di­pole mag­net for the lu­mi­nos­ity mon­i­tor and to de­tect scat­tered elec­trons (e-tag­ger). To avoid syn­chro­tron ra­di­a­tion back­grounds in the de­tec­tor no strong elec­tron bend­ing mag­net is placed within 40 m up­stream of the IP. The mag­net aper­tures on the rear side are large enough to allow syn­chro­tron ra­di­a­tion to pass through the mag­nets. The beam pipe has been op­ti­mized to re­duce the im­ped­ance; the total power loss in the cen­tral vac­uum cham­ber is ex­pected to be less than 90 W. To re­duce risk and cost the IR is de­signed to em­ploy stan­dard NbTi su­per­con­duct­ing mag­nets, which are de­scribed in a sep­a­rate paper.
* An Assessment of U.S.-Based Electron-Ion Collider Science. (2018). Washington, D.C.: National Academies Press. https://doi.org/10.17226/25171
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB002  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB004 Electron-Ion Luminosity Maximization in the EIC 2582
 
  • W. Fischer, E.C. Aschenauer, M. Blaskiewicz, K.A. Drees, A.V. Fedotov, H. Huang, C. Montag, V. Ptitsyn, D. Raparia, V. Schoefer, K.S. Smith, P. Thieberger, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The elec­tron-ion lu­mi­nos­ity in EIC has a num­ber of lim­its, in­clud­ing the ion in­ten­sity avail­able from the in­jec­tors, the total ion beam cur­rent, the elec­tron bunch in­ten­sity, the total elec­tron cur­rent, the syn­chro­tron ra­di­a­tion power, the beam-beam ef­fect, the achiev­able beta func­tions at the in­ter­ac­tion points (IPs), the max­i­mum an­gu­lar spreads at the IP, the ion emit­tances reach­able with sto­chas­tic or strong cool­ing, the ratio of hor­i­zon­tal to ver­ti­cal emit­tance, and space charge ef­fects. We map the e-A lu­mi­nos­ity over the cen­ter-of-mass en­ergy range for some ions rang­ing from deuterons to ura­nium ions. For e-Au col­li­sions the pre­sent de­sign pro­vides for elec­tron-nu­cleon (e-Au) peak lu­mi­nosi­ties of 1.7x1033 cm-2s−1 with sto­chas­tic cool­ing, and 4.7x1033 cm-2s−1 with strong hadron cool­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB004  
About • paper received ※ 18 May 2021       paper accepted ※ 21 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)