# ELECTRON-ION LUMINOSITY MAXIMIZATION IN THE EIC* 

W. Fischer ${ }^{\dagger}$, V. Ptitsyn, E. C. Aschenauer, M. Blaskiewicz, A. Drees, A. Fedotov, H. Huang, C. Montag, D. Raparia, V. Schoefer, K. S. Smith, P. Thieberger, F. Willeke<br>Brookhaven National Laboratory, Upton, NY, USA<br>Y. Zhang, Jefferson Lab, Newport News, VA, USA

## Abstract

The electron-ion luminosity in the EIC has a number of limits, including the ion intensity available from the injectors, the total ion beam current, the electron bunch intensity, the total electron current, the synchrotron radiation power, the beam-beam effect, the achievable beta functions at the Interaction Point, the maximum angular spreads at the Interaction Point, the ion emittances reachable with Strong Hadron Cooling, the ratio of horizontal to vertical emittance, and space charge effects. We map the e-A luminosity over the center-of-mass energy range for some ions ranging from deuterons to uranium ions. For e-Au collisions the present design provides for electron-nucleon (e-Au) peak luminosities of up to $4.8 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with Strong Hadron Cooling.

## INTRODUCTION

The Electron-Ion Collider EIC design has estimated luminosities for electron-proton (e-p) collisions with Strong Hadron Cooling (SHC) [1, 2]. For electron-ion operation in the EIC [3] we map the e-A luminosity over the operational energy range for a number of ions, ranging from deuterons to uranium ions (Table 1).

Table 1: Ion beam parameters for the EIC. The proton parameters for the maximized e-p luminosity with $E_{A}=275 \mathrm{GeV}$ are listed for reference [1].

| Quantity | Unit | $\mathbf{p} \uparrow$ | $\mathbf{d} \uparrow$ | $\mathbf{h} \uparrow$ | $\mathbf{C u}$ | $\mathbf{A u}$ | $\mathbf{U}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| charge number $Z$ | $\ldots$ | 1 | 1 | 2 | 29 | 79 | 92 |
| mass number $A$ | $\ldots$ | 1 | 2 | 3 | 63 | 197 | 238 |
| min energy $E_{A, \text { min }}$ | $\mathrm{GeV} / \mathrm{n}$ | 41 | 50 | 50 | 50 | 50 | 50 |
| max energy $E_{A, \text { max }} \mathrm{GeV} / \mathrm{n}$ | 275 | 138 | 183 | 127 | 110 | 106 |  |
| max bunch intensity $N_{A}$ |  |  |  |  |  |  |  |
| for $k_{b}=290$ | $10^{10}$ | 19.1 | 10 | 10 | 0.54 | 0.20 | 0.045 |
| for $k_{b}=1160$ | $10^{10}$ | 6.9 | 2.5 | 2.5 | 0.14 | 0.05 | 0.011 |
| spin polarization | $\%$ | 70 | 70 | 70 | - | - | - |

.ischer@bnl.gov
beam size of both beams are always matched at the Interaction Point. The full crossing angle is fixed at $\theta=25 \mathrm{mrad}$, and the effective crossing angle is close to zero due to a crab crossing scheme. The luminosity constraints can be grouped into three groups: (i) geometric, (ii) intensity and (iii) crossing angle and longitudinal constraints (Table 2).

Table 2: Parameter Constraints for the EIC Luminosity Maximization

| No | Quantity | Unit | Limit for $p$ | Limit for A | Derived from |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | geometric constraints |  |  |  |  |
| 1 | IP $\beta$-function $\beta_{e, x, \text { min }}^{*}$ | m | $>0.35$ |  | DA |
| 2 | IP $\beta$-function $\beta_{e, y, \text { min }}^{e, x}$ | m | $>0.05$ |  | DA |
| 3 | IP $\beta$-function $\beta_{A, x, \text { min }}^{*}$ | m | $>0.90$ |  | DA |
| 4 | IP $\beta$-function $\beta_{A, y, \text { min }}^{*}$ | m | $>0.04$ |  | DA |
| 5 | rms emittance $\epsilon_{e, x}$ |  |  |  |  |
|  | $E_{e}=5 \mathrm{GeV}$ | nm | $=20$ |  | lattice |
|  | $E_{e}=10 \mathrm{GeV}$ | nm | $=20$ |  | lattice |
|  | $E_{e}=18 \mathrm{GeV}$ | nm | $=24$ |  | lattice |
| 6 | norm. rms emitt. $\epsilon_{e, n, y, \text { min }}$ | $\mu \mathrm{m}$ | $>20$ |  | source, accel. |
| 7 | norm. rms emitt. $\epsilon_{A, n, x, y, \text { min }}$ |  | Ref. [1] |  | IBS+cooling |
| 8 | $\underline{r a t i o}\left(\epsilon_{A, y} / \epsilon_{A, x}\right)_{\text {min }}$ | ... | > 0.05 |  | coupling |
| 10 | IP rms spread $\sigma_{e, x, \text { max }}^{\prime}$ | $\mu \mathrm{rad}$ | < 220 |  | synch. rad. |
| 11 | IP rms spread $\sigma_{e, y, \text { max }}^{\prime}$ | $\mu \mathrm{rad}$ | < 220 |  | synch. rad. |
|  | IP rms spread $\sigma_{A, x, \text { max }}^{\prime}$ |  |  |  |  |
|  | $\mathrm{HA}^{\sharp}, E_{p, A}=100 \mathrm{GeV} / \mathrm{n}$ | $\mu \mathrm{rad}$ | < 180 | < 45* | Roman pots |
|  | $\mathrm{HA}^{\#}, E_{p}=275 \mathrm{GeV}$ | $\mu \mathrm{rad}$ | < 65 | NA* | Roman pots |
|  | $\mathrm{HD}^{\ddagger}, E_{p, A}=41 \mathrm{GeV} / \mathrm{n}$ | $\mu \mathrm{rad}$ | < 220 | $275 *$ | Roman pots |
|  | $\mathrm{HD}^{\ddagger}, E_{p, A}=100 \mathrm{GeV} / \mathrm{n}$ | $\mu \mathrm{rad}$ | <220 | $220 *$ | Roman pots |
|  | $\mathrm{HD}^{\ddagger}, E_{p}=275 \mathrm{GeV}$ | $\mu \mathrm{rad}$ | < 150 | NA* | Roman pots |
| 12 | IP rms spread $\sigma_{A, y, \text { max }}^{\prime}$ |  |  |  |  |
|  | HA ${ }^{\text {\# }}$ | $\mu \mathrm{rad}$ | < 380 | $<45^{*}$ | Roman pots |
|  | HD ${ }^{\ddagger}$ | $\mu \mathrm{rad}$ | < 380 | < 380* | Roman pots |
|  | intensity constraints |  |  |  |  |
| 13 | bunch intensity $N_{e, \text { max }}$ | $10^{10}$ | < 17.2 |  | source, instab. |
| 14 | bunch intensity $N_{A, \text { max }}$ |  | Table 1 |  | source, accel. |
| 15 | total beam current $I_{e, \text { max }}$ | A | < 2.5 |  | B-factories |
| 16 | total beam current $I_{A, \text { max }}$ | A | < 1.0 |  | e-cloud, cryo |
| 17 | synch. rad. power $P_{e, \text { max }}$ | MW | < 10 |  | admin. limit |
| 18 | beam-beam $\xi_{e, x, y, \text { max }}$ | ... | $<0.1$ |  | $\mathrm{e}^{+} \mathrm{e}^{-}$colliders |
| 19 | beam-beam $\xi_{A, x, y, \text { max }}$ | ... | $<0.015$ |  | RHIC |
| 20 | space charge $\Delta Q_{\text {sc, }, \text {, } x, y, \max }$ | , | < 0.05 |  | experience |
| 21 | IBS emitt. growth times, all 3 dimensions, minimum |  |  |  |  |
|  | without cooling | h | > 8 | NA | operation |
|  | with cooling | h | >2 | NA | operation |
|  | crossing angle and longitudinal constraints |  |  |  |  |
| 2223 | full crossing angle $\theta$ | mrad | $=25$ |  | bb, synch. rad. |
|  | RF voltages $V_{\text {rffmax }}$ |  |  |  |  |
|  | $24.6 \mathrm{MHz}(h=315)$ | MV | < 0.6 |  | hardware |
|  | $197 \mathrm{MHz}(h=8 \times 315)$ | MV | $<6$ |  | hardware |
|  | $591 \mathrm{MHz}(h=24 \times 315)$ | MV | $<20$ |  | hardware |
| 24 | $L$ reduction factor $H_{\text {min }}$ | ... | $>0.8$ | NA | beam-beam |

## FORMULAS

For matched horizontal and vertical rms beam sizes at the $\operatorname{IP}\left(\sigma_{e, x, y}=\sigma_{A, x, y}=\sigma_{x, y}\right)$ the electron-nucleon luminosity is

$$
\begin{equation*}
L_{e N}=A \frac{N_{e} N_{A} f_{r e v} k_{b}}{4 \pi \sigma_{x} \sigma_{y}} H\left(\sigma_{e, A, s}, \beta_{e, A, x, y}^{*}, \theta, f_{c r a b}\right) \tag{1}
\end{equation*}
$$

MC1: Circular and Linear Colliders
where $A$ is the ion mass number, $N_{e, A}$ are the electron and ion bunch intensities, $f_{\text {rev }}$ is the revolution frequency, and $H \leq 1$ a geometric factor that accounts for the crossing angle $\theta$, the crabbing scheme with cavities of frequency $f_{\text {crab }}$ and the hourglass effect. $\beta_{x, y}^{*}$ are the lattice functions at the IP and $\sigma_{s}$ the rms bunch length. The beam sizes $\sigma_{x, y}$ and angular spreads $\sigma_{x, y}^{\prime}$ at the IP are

$$
\begin{align*}
\sigma_{x, y} & =\sqrt{\epsilon_{x, y} \beta_{x, y}^{*}},  \tag{2}\\
\sigma_{x, y}^{\prime} & =\sqrt{\frac{\epsilon_{x, y}}{\beta_{x, y}^{*}}}=\frac{\epsilon_{x, y}}{\sigma_{x, y}}=\frac{\sigma_{x, y}}{\beta_{x, y}^{*}}, \tag{3}
\end{align*}
$$

where $\epsilon_{e, A, x}$ are the unnormalized rms emittances. Without crabbing and with crossing in the horizontal plane the reduction factor $H$ is given by [8]

$$
\begin{array}{r}
H\left(\theta, \beta_{e, A, x, y}^{*}, \sigma_{e, A, s}\right)=2 \sqrt{\frac{2}{\pi}} \cos \frac{\theta}{2} \frac{\sigma_{x}^{2} \sigma_{y}^{2}}{\sqrt{\sigma_{e, s}^{2}+\sigma_{A, s}^{2}}} \times \\
\times \int_{-\infty}^{+\infty} d s \frac{\exp \left\{s^{2}\left(-\frac{1+\cos \theta}{\sigma_{e, s}^{2}+\sigma_{A, s}^{2}}+\frac{\cos \theta-1}{S_{e, x}^{2}+S_{A, x}^{2}}\right)\right\}}{\sqrt{S_{e, x}+S_{A, x}} \sqrt{S_{e, y}+S_{A, y}}} \tag{4}
\end{array}
$$

with

$$
\begin{equation*}
S_{e, A, x, y}=\frac{s^{2} \cos ^{2}\left(\frac{\theta}{2}\right)+\beta_{e, A, x, y}^{* 2}}{\beta_{e, A, x, y}^{* 2}} \sigma_{e, A, x, y}^{* 2} \tag{5}
\end{equation*}
$$

With perfect crabbing $\theta=0$, but crab cavities with imperfect non-linearity compensation will also reduce $H$ [1].

There are limits for $N_{e, A}$ from the injectors, and limits on the total beam currents

$$
\begin{equation*}
I_{e, A}=f_{r e v} k_{b} Z e N_{e, A} \tag{6}
\end{equation*}
$$

( $Z=1$ for $I_{e}$ ). The beam-beam parameters are

$$
\begin{equation*}
\xi_{e, A, x, y}=\frac{r_{e, p}}{2 \pi} \frac{Z}{A} \frac{N_{A, e} \beta_{e, A, x, y}^{*}}{\gamma_{e, A} \sigma_{x, y}\left(\sigma_{x}+\sigma_{y}\right)} \tag{7}
\end{equation*}
$$

( $A=1$ for $\xi_{e}$ ), where $r_{e, p}$ is the classical electron, proton radius, $\gamma_{e, A}$ are the Lorentz factors. There is an administrative limit on the synchrotron radiation power

$$
\begin{equation*}
P_{e}=f_{\text {rev }} k_{b} N_{e} \frac{C_{\gamma}}{2 \pi} E_{e}^{4} \mathscr{T}_{2}, \tag{8}
\end{equation*}
$$

with $C_{\gamma}=\frac{4 \pi}{3} \frac{r_{e}}{\left(m_{e} c^{2}\right)^{3}}$, where $r_{e}$ is the classical electron radius, $c$ the speed of light, $m_{e}, E_{e}$ the electron mass and energy respectively and $\mathscr{T}_{2}=\oint\left(\frac{1}{\rho_{x}^{2}}+\frac{1}{\rho_{y}^{2}}\right) d s$ the second radiation integral. $\rho_{x, y}$ are the $s$-dependent bending radii. The space-charge parameters for ions are

$$
\begin{equation*}
\Delta Q_{\mathrm{sc}, A, x, y}=-\frac{Z^{2}}{A} \frac{r_{p}}{4 \pi} \frac{N_{A}}{\beta_{A} \gamma_{A}^{2} \epsilon_{A, n, x, y}} \frac{C}{\sqrt{2 \pi} \sigma_{s}} \tag{9}
\end{equation*}
$$

where $\beta_{A}$ is the ion speed divided by $c$, and $\epsilon_{A, n, x, y}=\left(\beta_{A} \gamma_{A}\right) \epsilon_{A, x, y}$ the normalized rms emittance.

## LUMINOSITY MAXIMIZATION

With Eq. (1) luminosity maximization amounts to minimizing $\sigma_{x, y}$, and maximizing $N_{e, A}$ and $H$. With the constraints in Table 2 this can be maximized in three steps:

1. Geometric constraints determine $\left(\sigma_{x}, \sigma_{y}\right)$.
2. Intensity constraints determine ( $\beta_{x, y}^{*}, \epsilon_{x, y}$ ) and $N_{e, A}$.
3. Crossing angle and longitudinal constraints determine $k_{b}$ and $H$.
Step 1. Using Eq. (2) the minimum $\sigma_{x}$ for a species is found. This configuration may, however, yield an angular spread $\sigma_{x}^{\prime}$ that is too large, and an adjustment is needed:

$$
\sigma_{x}= \begin{cases}\max \left\{\frac{\epsilon_{x, \text { min }}}{\sigma_{x, \text { max }}}, \beta_{x, \text { min }} \sigma_{x, \text { max }}^{\prime}\right\}, & \text { if } \sqrt{\frac{\epsilon_{x, \text { min }}}{\beta_{x, \text { min }}}}>\sigma_{x, \text { max }}^{\prime}  \tag{10}\\ \sqrt{\epsilon_{x, \min } \beta_{x, \text { min }}^{*}}, & \text { otherwise }\end{cases}
$$

The minimum horizontal beam size is then given by $\sigma_{x}=\max \left\{\sigma_{e, x}, \sigma_{A, x}\right\}$, and the same is done for $\sigma_{y}$.

Step 2. For given $\left(\sigma_{x}, \sigma_{y}\right)$ it is favorable to minimize $\beta^{*}$ and maximize $\epsilon_{x}$ for the intensity dependent constraints (Eqs. (7) and (9)). We can therefore determine $\epsilon_{x}, \beta_{x}^{*}$ in the following way

$$
\epsilon_{x}= \begin{cases}\sigma_{x} \sigma_{x, \text { max }}^{\prime}, & \text { if } \frac{\sigma_{x}}{\beta_{x, \text { min }}^{*}}>\sigma_{x, \text { max }}^{\prime}  \tag{11}\\ \frac{\sigma_{x}^{2}}{\beta_{x, \text { min }}^{*}}, & \text { otherwise }\end{cases}
$$

for both $e, A$. For the ion vertical plane we also need to enforce constraint no. 8 in Table 2

$$
\begin{equation*}
\text { If } \epsilon_{A, y}<\epsilon_{A, x}\left(\frac{\epsilon_{A, y}}{\epsilon_{A, x}}\right)_{\min } \text { then } \epsilon_{A, y}=\epsilon_{A, x}\left(\frac{\epsilon_{A, y}}{\epsilon_{A, x}}\right)_{\min } \tag{12}
\end{equation*}
$$

The beta functions are then

$$
\begin{equation*}
\beta_{x, y}^{*}=\sigma_{x, y}^{2} / \epsilon_{x, y} \tag{13}
\end{equation*}
$$

also for both $e, A$. After this is done the maximum $N_{e, A}$ are determined from Eqs. (6), (7), (8) and (9) and Table 2 as

$$
\begin{align*}
N_{e 1, A 1} & =N_{e, A, \max } \quad[\text { Table 2], }  \tag{14}\\
N_{e 2, A 2} & =N_{e 2, A 2}\left(I_{e, A, \max }\right) \text { [Eq. (6)], }  \tag{15}\\
N_{e 3, A 3} & =N_{e 3, A 3}\left(\xi_{e, A, x}\right) \text { [Eq. (7)], }  \tag{16}\\
N_{e 4, A 4} & =N_{e 4, A 4}\left(\xi_{e, A, y}\right) \text { [Eq. (7)], }  \tag{17}\\
N_{e 5} & =N_{e 5}\left(P_{e, \max }\right) \text { [Eq. (8)], }  \tag{18}\\
N_{A 5, A 6} & =N_{A 5, A 6}\left(\Delta Q_{\text {sc }, A, x, y, \max }\right) \text { [Eq. (9)], } \tag{19}
\end{align*}
$$

and the maximum bunch intensities $N_{e, A}$ are

$$
\begin{equation*}
N_{e}=\min \left\{N_{e 1}, \ldots, N_{e 5}\right\}, \quad N_{A}=\min \left\{N_{A 1}, \ldots, N_{A 6}\right\} \tag{20}
\end{equation*}
$$

Step 3. The above maximization is calculated for the number of bunches under consideration $k_{b}=290,1160$ and the highest luminosity $L_{e N}$ is retained. For different $k_{b}$ the bunch intensity $N_{A}$, minimum emittances $\epsilon_{A, n, x, y}$, rms bunch length $\sigma_{s, A}$, and luminosity reduction factor $H$ change.

The emittance maximization algorithm, with the boundary conditions listed in Tables 1 and 2 has been implemented in Mathematica [9].



Figure 1: EIC e-A luminosity $L_{e N}$ for $N=\mathrm{p}, \mathrm{d}, \mathrm{h}, \mathrm{Cu}, \mathrm{Au}$ and U beams, all with Strong Hadron Cooling. Part (a) shows the luminosities for the High Acceptance limits imposed on the angular beam spreads $\sigma_{A, x, y, \max }^{\prime}$ at the Interaction Point (Table 2), and part (b) for the High Divergence limits. With Strong Hadron Cooling the peak and average store luminosity are close. The e-p reference case data are taken from Ref. [1].

## RESULTS

In electron-ion collisions it is critical to detect all possible particles, and especially those with small transverse momentum $p_{t}$. The dominant operating mode will therefore be the High Acceptance mode, and the limits for the angular rms spread at the IP $\sigma_{A, x, y, \text { max }}$ will constrain the maximum luminosity. There likely will also be cases where the High Divergence mode is required, with which more luminosity can be delivered.

With Roman pots at $s=25 \mathrm{~m}$ from the IP, a distance of the Roman pots of $10 \sigma_{x, y}$ from the beam center, and the ability of detecting particles with $p_{t}$ as low as 50 MeV , the HA limits shown in Table 2 result. The $\sigma_{A, x, y, \max }^{\prime}$ limits, and correspondingly the luminosity, may be increased with a different Interaction Region (IR) optics with a secondary focus.

Figure 1 shows the maximized peak luminosity over the full EIC energy range for the ion species listed in Table 1 together with the e-p case for reference [1]. With Strong Hadron Cooling the average store luminosity will be close to the peak luminosity. Part (a) shows the luminosities for the range of ion species for the main e-A mode with HA, and part (b) for the HD mode with higher luminosities. In the HA mode the luminosity is constrained by 8 limits simultaneously, and in the HD mode by 9 limits (Table 2).

## ACKNOWLEDGMENTS

We are thankful to the EIC design team for discussion and support.

## REFERENCES

[1] F. Willeke et al., "Electron Ion Collider Conceptual Design Report 2021", Brookhaven National Laboratory, Upton, NY,

USA, Rep. BNL-221006-2021-FORE, 2021.
[2] C. Montag et al., "Design Status Update of the Electron-Ion Collider", presented at the 12th Int. Particle Accelerator Conf. (IPAC’21), Campinas, Brazil, May 2021, paper WEPAB005, this conference.
[3] W. Fischer et al., "eRHIC in Electron-Ion Operation", in Proc. 10th Int. Particle Accelerator Conf. (IPAC'19), Melbourne, Australia, May 2019, pp. 738-741. doi:10.18429/ JACoW-IPAC2019-MOPRB072
[4] M. Blaskiewicz and J. M. Brennan, "Bunched beam stochastic cooling in a collider", Phys. Rev. ST Accel. Beams, vol. 10, p. 061001, Jun. 2007.
doi:10.1103/PhysRevSTAB.10.061001
[5] M. Blaskiewicz, J. M. Brennan, and F. Severino, "Operational Stochastic Cooling in the Relativistic Heavy-Ion Collider", Phys. Rev. Lett., vol. 100, p. 174802, May 2008.
doi:10.1103/PhysRevLett.100.174802
[6] M. Blaskiewicz, J. M. Brennan, and K. Mernick, "ThreeDimensional Stochastic Cooling in the Relativistic Heavy Ion Collider", Phys. Rev. Lett., vol. 105, p. 094801, 2010. doi:10.1103/PhysRevLett.105.094801
[7] W. Fischer and J. M. Jowett, "Ion colliders", Rev. Accel. Sci. Technol., vol. 7, pp. 49-76, 2014. doi:10.1142/ S1793626814300047
[8] Y. M. Peng and Y. Zhang, "The Luminosity Reduction with Hourglass Effect and Crossing Angle in an e-p Collider", in Proc. 6th Int. Particle Accelerator Conf. (IPAC'15), Richmond, VA, USA, May 2015, pp. 2016-2018. doi:10.18429/ JACoW-IPAC2015-TUPTY010
[9] Wolfram Research, Inc., "Mathematica", Version 12.0, Champaign, IL, USA, 2019.

