Paper | Title | Page |
---|---|---|
MOPAB009 | Review of the Fixed Target Operation at RHIC in 2020 | 69 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report. |
||
![]() |
Poster MOPAB009 [2.913 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 17 August 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB010 | RHIC Beam Energy Scan Operation with Electron Cooling in 2020 | 72 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam. |
||
![]() |
Poster MOPAB010 [3.523 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 29 July 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB042 | Large Radial Shifts in the EIC Hadron Storage Ring | 1443 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 15 June 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB002 | The Interaction Region of the Electron-Ion Collider EIC | 2574 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. This paper presents an overview of the Interaction Region (IR) design for the planned Electron-Ion Collider (EIC) at Brookhaven National Laboratory. The IR is designed to meet the requirements of the nuclear physics community *. The IR design features a ±4.5 m free space for the detector; a forward spectrometer magnet is used for the detection of hadrons scattered under small angles. The hadrons are separated from the neutrons allowing detection of neutrons up to ±4 mrad. On the rear side, the electrons are separated from photons using a weak dipole magnet for the luminosity monitor and to detect scattered electrons (e-tagger). To avoid synchrotron radiation backgrounds in the detector no strong electron bending magnet is placed within 40 m upstream of the IP. The magnet apertures on the rear side are large enough to allow synchrotron radiation to pass through the magnets. The beam pipe has been optimized to reduce the impedance; the total power loss in the central vacuum chamber is expected to be less than 90 W. To reduce risk and cost the IR is designed to employ standard NbTi superconducting magnets, which are described in a separate paper. * An Assessment of U.S.-Based Electron-Ion Collider Science. (2018). Washington, D.C.: National Academies Press. https://doi.org/10.17226/25171 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB002 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 25 June 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB005 | Design Status Update of the Electron-Ion Collider | 2585 |
|
||
Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments. |
||
![]() |
Poster WEPAB005 [2.095 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 22 June 2021 issue date ※ 16 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |