Paper | Title | Page |
---|---|---|
MOPAB009 | Review of the Fixed Target Operation at RHIC in 2020 | 69 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report. |
||
Poster MOPAB009 [2.913 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 17 August 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB010 | RHIC Beam Energy Scan Operation with Electron Cooling in 2020 | 72 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam. |
||
Poster MOPAB010 [3.523 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 29 July 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB004 | Electron-Ion Luminosity Maximization in the EIC | 2582 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The electron-ion luminosity in EIC has a number of limits, including the ion intensity available from the injectors, the total ion beam current, the electron bunch intensity, the total electron current, the synchrotron radiation power, the beam-beam effect, the achievable beta functions at the interaction points (IPs), the maximum angular spreads at the IP, the ion emittances reachable with stochastic or strong cooling, the ratio of horizontal to vertical emittance, and space charge effects. We map the e-A luminosity over the center-of-mass energy range for some ions ranging from deuterons to uranium ions. For e-Au collisions the present design provides for electron-nucleon (e-Au) peak luminosities of 1.7x1033 cm-2s−1 with stochastic cooling, and 4.7x1033 cm-2s−1 with strong hadron cooling. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB004 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 21 June 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |