Paper | Title | Page |
---|---|---|
MOPAB287 | The Development of Single Pulse High Dynamic Range BPM Signal Detector Design at AWA | 909 |
|
||
Funding: the US Department of Energy, Office of Science Single pulse high dynamic range BPM signal detector has been on the most wanted list of Argonne Wakefield Accelerator (AWA) Test Facility for many years. Unique capabilities of AWA beamline require BPM instrumentation with an unprecedented dynamic range, thus cost effective solution could be challenging to design and prototype. Our most recent design, and the results of our quest for a solution, are shared in this paper. |
||
Poster MOPAB287 [1.372 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB287 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 23 June 2021 issue date ※ 13 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB304 | Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility | 960 |
|
||
Particle accelerators must achieve certain beam quality objectives for use in different experiments. Usually, optimizing certain beam objectives comes at the expense of others. Additionally, there are many input parameters and a limited number of diagnostics. Therefore, accelerator tuning becomes a multi-objective optimization problem with a limited number of observations. Multi-objective Bayesian optimization was recently proposed as an efficient method to find the Pareto front for an online accelerator tuning problem with reduced number of observations. In order to experimentally test the multi-objective Bayesian optimization method, a novel accelerator diagnostic is being designed to measure multiple beam quality metrics of an electron beam at the Argonne Wakefield Accelerator Facility. Here, we present a design consisting in a pepper-pot mask, a dipole magnet and a scintillation screen, which allows a simultaneous measurement of the electron beam energy spread and vertical emittance. Additionally, a surrogate model for the vertical emittance was constructed with only 60 observations and without prior knowledge of the objective function nor diagnostics constraints. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB304 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 08 June 2021 issue date ※ 26 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB098 | Recent Progress Toward a Conduction-Cooled Superconducting Radiofrequency Electron Gun | 1604 |
|
||
Funding: This work was supported by the US Department of Energy (DOE) under contract DE-SC0018367 High-repetition-rate electron sources have widespread applications. This contribution discusses the progress toward a proof-of-principle demonstration for a conduction-cooled electron source. The source consists of a simple modification of an elliptical cavity that enhances the field electric field at the photocathode surface. The source was cooled to cryogenic temperatures and preliminary measurements for the quality factor and accelerating field were performed. Additionally, we present future plans to improve the source along with simulated beam-dynamics performances. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB098 | |
About • | paper received ※ 29 May 2021 paper accepted ※ 17 June 2021 issue date ※ 17 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB295 | Upgrade to the EPICS Control System at the Argonne Wakefield Accelerator Test Facility | 2173 |
|
||
Funding: US Department of Energy, Office of Science The Argonne Wakefield Accelerator (AWA) Test Facility has used a completely homebrewed, MS Windows-based control system for the last 20 years. In an effort to modernize the control system and prepare for an active machine learning program, the AWA will work with the Advanced Photon Source (APS) controls group to upgrade its control system to EPICS. The EPICS control system is expected to facilitate collaborations and support the future growth of AWA. An overview of the previous AWA control and data acquisition system is presented, along with a vision and path for completing the EPICS upgrade. |
||
Poster TUPAB295 [1.108 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB295 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 01 July 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB296 | LLRF Upgrade at the Argonne Wakefield Accelerator Test Facility | 2176 |
|
||
Funding: US Department of Energy, Office of Science The Argonne Wakefiled Accelerator (AWA) Test Facility designed and operated a homemade LLRF system for the last 20 years. It is based on NI-PXI products that has now become obsolete. The AWA’s LLRF cannot keep up with the increasing stability demands of AWA’s upgraded facility. An overhaul of the system is strongly desired. With the support from DOE-HEP, the AWA is collaborating with Lawrence Berkeley National Laboratory (LBNL)to upgrade its LLRF system with modern instrumentation to meet the growing stability demands. An overview of AWA’s current LLRF system performance is presented together with the upgrade plan and expectations. |
||
Poster TUPAB296 [1.943 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB296 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 05 July 2021 issue date ※ 26 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB163 | An X-Band Ultra-High Gradient Photoinjector | 2986 |
|
||
Funding: This work was supported by DoE SBIR grant # DE-SC0018709. High brightness beams appealing for XFELs and UEM essentially imply a high current and a low emittance. To obtain such beams we propose to raise the accelerating voltage in the gun mitigating repealing Coulomb forces. An ultra-high gradient is achieved utilizing a short-pulse technology. We have designed a room temperature X-band 1,5 cell gun that is able to inject 4 MeV, 100 pC bunches with as low as 0.15 mcm normalized transverse emittance. The gun is operated with as high gradients as 400 MV/m and fed by 200 MW, 10 ns RF pulses generated with Argonne Wakefield Accelerator (AWA) power extractor. We report results of low RF power tests, laser alignment test results, and successful gun conditioning results carried out at nominal RF power. |
||
Poster WEPAB163 [5.427 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB163 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 02 June 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB270 | Characterization and Simulation of Optical Delay System for the Proof-of-Principle Experiment of Optical Stochastic Cooling at IOTA | 3269 |
|
||
Funding: CBB NSF-PHY-1549132 DOE DE-SC0018656 DOE DE-AC02-07CH11359 The Optical Stochastic Cooling (OSC) experiment at Fermilab’s IOTA storage ring uses two undulators to cool the beam over many turns. The radiation emitted by electrons in the first undulator is delayed and imaged in the second undulator where it applies a corrective energy kick on the electrons. Imperfections in the manufacturing of the delay plates can lead to a source of error. This paper presents the experimental characterization of the absolute thickness of these delay plates using an interferometric technique. The measured "thickness maps" are implemented in the Synchrotron Radiation Workshop (SRW) program to assess their impact on the delayed radiation pulse. |
||
Poster WEPAB270 [2.578 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB270 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 05 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB271 | Numerical Modelling of the Optical Stochastic Cooling Experiment at IOTA | 3273 |
|
||
Funding: CBB NSF-PHY-1549132 DOE DE-SC0018656 DOE DE-AC02-07CH11359 A proof-of-principle optical-stochastic cooling (OSC) experiment is currently in its commissioning phase at the Fermilab’s IOTA ring. In support of this experiment, we recently implemented an OSC element in the ELEGANT tracking program. The model, based on a semi-analytic description of OSC [*], supports the simulation of a large number of macroparticles (104-106) over many turns (106). This paper showcases the simulation capabilities to investigate the beam dynamics in the presence of cooling (or self-interacting radiation field in general) and quantify the impact of various sources of error (e.g. transverse and phase jitter), guide data analysis. * B. Andorf, V. A. Lebedev, J. Jarvis, and P. Piot Rev. Accel. Beams 21, 100702 (2018) |
||
Poster WEPAB271 [1.649 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB271 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 06 July 2021 issue date ※ 13 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB129 | Beam Dynamics Simulations in a High-Gradient X-Band Photoinjector | 4013 |
|
||
A high-gradient X-band (11.7-GHz) photoinjector was recently developed by Euclid Techlabs and is in its commissioning phase at the Argonne Wakefield Accelerator (AWA). This contribution discuss the beam-dynamics modeling of the photoinjector system comprising an RF gun and linac section. We especially discuss beam-dynamics optimization of setup for an integrated proof-of-principle experiments. We also discuss the use of such a photoinjector as a witness-bunch source for a future high-gradient collinear-wakefield accelerator experiments at the AWA.
* S. V. Kuzikov, et al. these proceedings. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB129 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 14 July 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB331 | High-Power Test of a Highly Over-Coupled X-Band RF Gun Driven by Short RF Pulses | 4432 |
|
||
Beam brightness, a key figure of merit of RF photocathode guns, can be improved by increasing the cathode surface field which suppresses emittance growth from space charge. The surface field in normal-conducting structures is mainly limited by RF breakdown and it has been experimentally discovered that RF breakdown rate exponentially depends on RF pulse length. A highly over-coupled 1.5-cell X-band photocathode gun has been developed to be powered by 9 ns RF pulses with 3 ns rising time, 3 ns flat-top, and 3 ns falling time generated by an X-band metallic power extractor. In the recent experiment at Argonne Wakefield Accelerator facility, cathode surface field up to ~350 MV/m with a low breakdown rate has been obtained under ~250 MW input power. Strong beam loading from dark current was observed during RF conditioning and quickly recovered to a negligible level after the gun reached the maximum gradient. Detailed high-power test results and data analysis will be reported in this manuscript. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB331 | |
About • | paper received ※ 25 May 2021 paper accepted ※ 14 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |