Paper | Title | Page |
---|---|---|
MOPAB007 | Prospect for Interaction Region Local Coupling Correction in the LHC Run 3 | 61 |
|
||
Funding: This work was supported by STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) and CERN. Successful operation of large scale particle accelerators depends on the precise correction of unavoidable magnet field or alignment errors present in the machine. In the LHC Run 2, local linear coupling in the Interaction Regions (IR) has been proven to have a severe impact on beam size and hence the luminosity - up to a 50% decrease -, making its handling a target for Run 3 and High Luminosity LHC (HL-LHC). However, current measurement methods are not optimised for local IR coupling. In this contribution, an approach to accurately minimise IR local coupling based on correlated external variables such as the |C-| is proposed. The validity of the method is demonstrated through simulations and benchmarked against theoretical values, such as Resonance Driving Terms (RDTs) and Ripken parameters. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB007 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 23 July 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB004 | Comparison of Accelerator Codes for Simulation of Lepton Colliders | 1334 |
|
||
This paper compares simulation results obtained with SAD, MAD-X and the PTC implementation in MADX for the design studies of the FCC-ee. On-momentum and off-momentum optics are explored for the various programs. Particle tracking with and without synchrotron radiation are used to compare amplitude detuning and emittance. Finally, this paper outlines how well-established SAD features such as tapering have recently been integrated into MADX. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB004 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 15 June 2021 issue date ※ 26 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB026 | Optics Measurements and Correction Plans for the HL-LHC | 2656 |
|
||
The High Luminosity LHC (HL-LHC) will require stringent optics correction to operate safely and deliver the design luminosity to the experiments. In order to achieve this, several new methods for optics correction have been developed. In this article, we outline some of these methods and we describe the envisioned strategy of how to use them in order to reach the challenging requirements of the HL-LHC physics program. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB026 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 27 July 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB027 | Optics Correction Strategy for Run 3 of the LHC | 2660 |
|
||
The Run 3 of the LHC will continue to provide new challenges for optics corrections. In order to succeed and go beyond what was achieved previously, several new methods to measure and correct the optics have been developed. In this article we describe these methods and outline the plans for the optics commissioning in 2022. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB027 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 12 July 2021 issue date ※ 11 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB028 | MAD-X for Future Accelerators | 2664 |
|
||
The feasibility and performance of the future accelerators must, to a large extent, be predicted by simulation codes. This implies that simulation codes need to include effects that previously played a minor role. For example, in large electron machines like the FCC-ee the large energy variation along the ring requires that the magnets strength is adjusted to the beam energy at that location, normally referred to as tapering. In this article, we present new features implemented in the MAD-X code to enable and facilitate simulations of future colliders. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB028 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 06 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB001 | Reaching the Sub Per Mil Level Coupling Corrections in the LHC | 3752 |
|
||
The High Luminosity LHC (HL-LHC) is requiring sub per mil coupling correction, as defined by the closest tune approach. In this article, the current coupling correction strategy is analyzed in order to understand if it can robustly correct to these very low levels. The impact of realistic errors on the coupling correction is investigated with MAD-X simulations, including the influence of local coupling on the global coupling correction. Through simulations and measurements in the LHC, the effect of BPM noise on the coupling correction is analyzed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB001 | |
About • | paper received ※ 11 May 2021 paper accepted ※ 28 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB168 | Optics Measurement by Excitation of Betatron Oscillations in the CERN PSB | 4078 |
|
||
Optics measurement from analysis of turn-by-turn BPM data of betatron oscillations excited with a kicker magnet has been employed very successfully in many machines but faces particular challenges in the CERN PSB where BPM to BPM phase advances are sub-optimal for optics reconstruction. Experience using turn-by-turn oscillation data for linear optics measurements during PSB commissioning in2021 is presented, with implications for the prospect of such techniques in the PSB more generally. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB168 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 14 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB169 | A Mechanism for Emittance Growth Based on Non-Linear Islands in LHC | 4082 |
|
||
Landau octupoles are used in the LHC to prevent coherent instabilities of the circulating beam. The reduction of their strength occurring during the energy ramp can transport particles in nonlinear islands to larger amplitude. This has the potential to lead to emittance growth and to beam-losses. Beam-based studies and simulations of emittance growth during Landau octupole ramps performed in the LHC are presented to explore this mechanism in more detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB169 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 14 July 2021 issue date ※ 14 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |