Author: Nie, Y.
Paper Title Page
MOPAB092 Project of Wuhan Photon Source 346
 
  • H.H. Li, Y. Deng, J.H. He, Y. Nie, L. Tang, J. Wang, Y.X. Zhu
    IAS, Wuhan City, People’s Republic of China
 
  Wuhan Photon Source (WHPS) has been designed as a fourth-generation light source, which consists of a low energy storage ring (1.5 GeV), a medium energy storage ring (4.0 GeV), and a linac working as a full energy injector. It has been planned to build the low energy light source first as the Phase I project, and then the medium energy light source after its completion. The low energy storage ring has been optimized with the main design parameters as following: An 8-cell, 500 mA storage ring, with a circumference of 180 m and nature emittance 238.4 pm-rad. Based on hybrid-7BA lattice structure, it reaches the soft X-ray diffraction limit. And at the middle of each cell, a 3.5 T superB magnet is used to extend the photon energy to the hard X-ray region. The swap-out injection is chosen due to the small dynamic aperture and a full energy S-band LINAC will be used as its injector. A 3rd harmonic cavity is designed for bunch lengthening to keep a sufficient lifetime. More details of the WHPS phase I project will be described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB092  
About • paper received ※ 10 June 2021       paper accepted ※ 23 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB024 Efficient Coupling of Hydrodynamic and Energy-Deposition Codes for Hydrodynamic-Tunnelling Studies on High-Energy Particle Accelerators 119
 
  • C. Wiesner, F. Carra, J. Kruse-Hansen, M. Masci, D. Wollmann
    CERN, Meyrin, Switzerland
  • Y. Nie
    KIT, Karlsruhe, Germany
 
  The machine-protection evaluation of high-energy accelerators comprises the study of beyond-design failures, including the direct beam impact onto machine elements. In case of a direct impact, the nominal beam of the Large Hadron Collider (LHC) would penetrate more than 30 meters into a solid copper target. The penetration depth due to the time structure of the particle beam is, thus, significantly longer than predicted from purely static energy-deposition simulations with 7 TeV protons. This effect, known as hydrodynamic tunnelling, is caused by the beam-induced density depletion of the material at the target axis, which allows subsequent bunches to penetrate deeper into the target. Its proper simulation requires, therefore, to sequentially couple an energy-deposition code and a hydrodynamic code for the different target densities. This paper describes a method to efficiently couple the simulations codes Autodyn and FLUKA based on automatic density assignment and input file generation, and presents the results achieved for a sample case.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB024  
About • paper received ※ 19 May 2021       paper accepted ※ 05 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB087 Full Characterization of the Bunch-Compressor Dipoles for FLUTE 1585
 
  • Y. Nie, A. Bernhard, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, Y. Tong
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The Ferninfrarot Linac- Und Test-Experiment (FLUTE) is a KIT-operated linac-based test facility for accelerator research and development as well as a compact, ultra-broadband and short-pulse terahertz (THz) source. As a key component of FLUTE, the bunch compressor (chicane) consisting of four specially designed dipoles will be used to compress the 40-50 MeV electron bunches after the linac down to single fs bunch length. The maximum vertical magnetic field of the dipoles reach 0.22 T, with an effective length of 200 mm. The good field region is ±40 mm and ±10.5 mm in the horizontal and vertical direction, respectively. The latest measurement results of the dipoles in terms of field homogeneity, excitation and field reproducibility within the good field regions will be reported, which meet the predefined specifications. The measured 3D magnetic field distributions have been used to perform beam dynamics simulations of the bunch compressor. Effects of the real field properties on the beam dynamics, which are different from that of the ASTRA built-in dipole field, will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB087  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB126 Operational Experience and Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FEL 4009
 
  • K. Damminsek, A. Bernhard, J. Gethmann, A.W. Grau, A.-S. Müller, Y. Nie, M.S. Ning, S.C. Richter, R. Rossmanith
    KIT, Karlsruhe, Germany
 
  A 40-period superconducting transverse gradient undulator (TGU) has been designed and fabricated at Karlsruhe Institute of Technology (KIT). Combining a TGU with a Laser Wakefield Accelerator (LWFA) is a potential key for realizing an extremely compact Free Electron Laser (FEL) radiation source. The TGU scheme is a viable option to compensate the challenging properties of the LWFA electron beam in terms of beam divergence and energy spread. In this contribution, we report on the operational experience of this TGU inside its own cryostat and show the current status of the TGU and the further plan for experiments. This work is supported by the BMBF project 05K19VKA PlasmaFEL (Federal Ministry of Education and Research).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB126  
About • paper received ※ 19 May 2021       paper accepted ※ 25 August 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)