Author: Monard, H.
Paper Title Page
WEPAB054 Electromagnetic and Beam Dynamics Studies of the ThomX LINAC 2721
 
  • M. Alkadi, C. Bruni, M. El Khaldi, M. Jacquet
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • H. Monard
    IJCLab, ORSAY, France
 
  ThomX is a new generation compact Compton source. The machine is composed of a 50/70 MeV injector linac and a storage ring where an electron bunch collides with a laser pulse accumulated in a Fabry-Perot resonator. The compact source, built at Irene Joliot-Curie Laboratory (IJCLAB) in the Orsay campus of Paris-Saclay University, is designed to produce a total flux of 1013 ph/s and a brightness of 1011 ph / (s.mm2.mrad2) in 0.1% of bandwidth with a tunable energy ranging from 45 keV to 90 keV on the X-ray beam axis. The photo-injector is composed of a homemade 2.5 cell photocathode RF-gun, placed between two solenoids. An energy of 5 MeV is reached with a 80 MV/m electric field gradient. During the commissioning phase, a 4.8 m S-band LIL section will be used to achieve a 50 MeV corresponding to a 45 keV X-ray energy. The LIL accelerating section is a quasi-constant gradient traveling wave structure. The energy gain in the section is 45 MeV, corresponding to an average effective accelerating gradient of 10 MV/m for an input RF power of 9 MW. Here we present the electromagnetic and beam dynamics studies of the ThomX LINAC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB054  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB117 Injection Feedback for a Storage Ring 2870
 
  • A. Moutardier, C. Bruni, I. Chaikovska, S. Chancé, N. Delerue, E.E. Ergenlik, V. Kubytskyi, H. Monard
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Funding: Research Agency under the Equipex convention ANR-10-EQPX-0051.
We report on an injection feedback scheme for the ThomX storage ring project. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering in a storage ring to generate a high flux of hard X-rays. Given the slow beam damping (in the ring), the injection must be performed with high accuracy to avoid large betatron oscillations. A homemade analytic code is used to compute the corrections that need to be applied before the beam injection to achieve a beam position accuracy of a few hundred micrometers in the first beam position monitors (BPMs). In order to do so the code needs the information provided by the ring’s diagnostic devices. The iterative feedback system has been tested using MadX simulations. Our simulations show that a performance that matches the BPMs’ accuracy can be achieved in less than 50 iterations in all cases. Details of this feedback algorithm, its efficiency and the simulations are discussed.
 
poster icon Poster WEPAB117 [2.422 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB117  
About • paper received ※ 28 May 2021       paper accepted ※ 01 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB118 Loss Maps Along the ThomX Transfer Line and the Ring First Turn 2874
 
  • A. Moutardier, C. Bruni, I. Chaikovska, S. Chancé, N. Delerue, E.E. Ergenlik, V. Kubytskyi, H. Monard
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Funding: Research Agency under the Equipex convention ANR-10-EQPX-0051.
We report on studies of the loss maps for particles travelling from the end of the ThomX’s linac along the transfer line to the end of the ring first turn in preparation of the machine commissioning. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering to generate a high flux of hard X-rays. The accelerator tracking code MadX is used to simulate electrons’ propagation and compute losses. These maps may be projected at any localisation along the bunch path or plotted along the bunch path. This information is particularly relevant at the locations of the monitoring devices (screens, position monitors,…) where loss predictions will be compared with measurements.
 
poster icon Poster WEPAB118 [3.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB118  
About • paper received ※ 28 May 2021       paper accepted ※ 28 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)