Author: Minty, M.G.
Paper Title Page
MOPAB009 Review of the Fixed Target Operation at RHIC in 2020 69
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report.
 
poster icon Poster MOPAB009 [2.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009  
About • paper received ※ 16 May 2021       paper accepted ※ 17 August 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB010 RHIC Beam Energy Scan Operation with Electron Cooling in 2020 72
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam.
 
poster icon Poster MOPAB010 [3.523 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010  
About • paper received ※ 17 May 2021       paper accepted ※ 29 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXA02 Operational Electron Cooling in the Relativistic Heavy Ion Collider 2516
 
  • A.V. Fedotov, K.A. Drees, W. Fischer, X. Gu, D. Kayran, J. Kewisch, C. Liu, K. Mernick, M.G. Minty, V. Schoefer, H. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Since the invention of the electron cooling technique its application to cool hadron beams in colliders was considered for numerous accelerator physics projects worldwide. However, achieving the required high-brightness electron beams of required quality and cooling of ion beams in collisions was deemed to be challenging. An electron cooling of ion beams employing a high-energy approach with RF-accelerated electron bunches was recently successfully implemented at BNL. It was used to cool ion beams in both collider rings with ion beams in collision. Electron cooling in RHIC became fully operational during the 2020 physics run and led to substantial improvements in luminosity. This presentation will discuss implementation, optimization and challenges of electron cooling for colliding ion beams in RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA02  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB194 Feasibility of Using the Existing RHIC Stripline BPMs for the EIC 3077
 
  • M.P. Sangroula, C. Liu, M.G. Minty, P. Thieberger
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The design of the Electron-Ion Collider (EIC) at Brookhaven National Laboratory (BNL) will utilize portions of the existing Relativistic Heavy Ion Collider (RHIC) for the EIC hadron ring. The EIC design calls for up to 10-times shorter ion bunches compared to the present RHIC operation. Higher single bunch peak currents will result in higher voltages to the output ports of the BPMs consequently producing more heating of the cryogenic signal cables connected to these output ports. Therefore, the existing stripline BPMs should be either upgraded or replaced with new ones. In this paper, we explore the potentially cost-effective approach by incorporating an RF-shielding piece into the existing BPMs as opposed to replacing them completely. Starting with the power delivered to the output ports, we present the proposed BPM modification with the RF-shielding piece. Then we discuss in detail the RF-shielding piece geometry including the dimension of RF slot and RF-fingers configuration. Finally, we present the optimization of the shielding piece and the mechanical tolerances required for its fabrication.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB194  
About • paper received ※ 21 May 2021       paper accepted ※ 28 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)