Author: Mapes, M.
Paper Title Page
TUPAB260 A Beam Screen to Prepare the RHIC Vacuum Chamber for EIC Hadron Beams: Conceptual Design and Requirements 2066
 
  • S. Verdú-Andrés, M. Blaskiewicz, J.M. Brennan, X. Gu, R.C. Gupta, A. Hershcovitch, M. Mapes, G.T. McIntyre, J.F. Muratore, S.K. Nayak, S. Peggs, V. Ptitsyn, R. Than, J.E. Tuozzolo, D. Weiss
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­ton Ion Col­lider (EIC) hadron ring will use the ex­ist­ing Rel­a­tivis­tic Heavy Ion Col­lider stor­age rings, in­clud­ing the su­per­con­duct­ing mag­net arcs. The vac­uum cham­bers in the su­per­con­duct­ing mag­nets and the cold mass in­ter­con­nects were not de­signed for EIC beams and so must be up­dated to re­duce its re­sis­tive-wall heat­ing and to sup­press elec­tron clouds. To do so with­out com­pro­mis­ing the EIC lu­mi­nos­ity goal, a stain­less steel beam screen with co-lam­i­nated cop­per and a thin layer of amor­phous car­bon will be in­stalled. This paper de­scribes the main re­quire­ments that our so­lu­tion for the hadron ring vac­uum cham­ber needs to sat­isfy, in­clud­ing im­ped­ance, aper­ture lim­i­ta­tions, vac­uum, ther­mal and struc­tural sta­bil­ity, me­chan­i­cal de­sign, in­stal­la­tion and op­er­a­tion. The con­cep­tual de­sign of the beam screen cur­rently under de­vel­op­ment is in­tro­duced.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB260  
About • paper received ※ 19 May 2021       paper accepted ※ 25 August 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB381 Thermal Analysis of the RHIC Arc Dipole Magnet Cold Mass with the EIC Beam Screen 2413
 
  • S.K. Nayak, M. Anerella, M. Blaskiewicz, J.M. Brennan, R.C. Gupta, M. Mapes, G.T. McIntyre, S. Peggs, R. Than, J.E. Tuozzolo, S. Verdú-Andrés, D. Weiss
    BNL, Upton, New York, USA
 
  Funding: Funding agency Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The EIC will make use of the ex­ist­ing RHIC stor­age rings with their su­per­con­duct­ing (SC) mag­net arcs. A stain­less-steel beam screen with co-lam­i­nated cop­per and a thin amor­phous car­bon (aC) film on the inner sur­face will be in­stalled in the beam pipe of the SC mag­nets. The cop­per will re­duce the beam-in­duced re­sis­tive-wall (RW) heat­ing from op­er­a­tion with the higher in­ten­sity EIC beams, that if not ad­dressed would make the mag­nets quench. Lim­it­ing the RW heat­ing is also im­por­tant to achieve an ad­e­quately low vac­uum level. The aC coat­ing will re­duce sec­ondary elec­tron yield which could also cause heat­ing and limit in­ten­sity. Among all the RHIC SC mag­nets, the arc dipoles pre­sent the biggest chal­lenge to the de­sign and in­stal­la­tion of beam screens. The arc dipoles, which make up for 78% (2.5 km) length of all SC mag­nets in RHIC, ex­pect the largest RW heat­ing due to their small­est aper­ture. These mag­nets are also the longest (9.45 m each), thus ex­pe­ri­enc­ing the largest tem­per­a­ture rise over their length, and have a large sagitta (48.5 mm) that in­creases the dif­fi­culty to in­stall the beam screen in place. This paper pre­sents a de­tailed ther­mal analy­sis of the mag­net-screen sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB381  
About • paper received ※ 19 May 2021       paper accepted ※ 20 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB189 EIC Hadron Beamline Vacuum Studies 3060
 
  • D. Weiss, M. Mapes, J.E. Tuozzolo, S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Ninety per­cent of the EIC hadron ring beam­line is cold-bore com­pris­ing strings of in­ter­con­nected 4.55 K RHIC su­per­con­duct­ing (SC) mag­nets. The EIC op­er­at­ing spec­i­fi­ca­tion re­quires shorter bunches and 3x higher in­ten­sity beams which are not ap­pro­pri­ate for the pre­sent RHIC stain­less steel cold-bore beam tube. The in­ten­sity and emit­tance of the hadron beams will de­grade due to in­ter­ac­tions with resid­ual gas or vac­uum in­sta­bil­i­ties aris­ing from the ex­pected re­sis­tive-wall (RW) heat­ing, elec­tron clouds, and beam-in­duced des­orp­tion mech­a­nisms. With­out strate­gies to limit RW heat­ing, major cryo­genic sys­tem mod­i­fi­ca­tions are needed to pre­vent SC mag­net quenches. The SC mag­net cold-bore beam tubes will be equipped with a high RRR cop­per clad stain­less steel sleeve to sig­nif­i­cantly re­duce RW heat­ing and so the ef­fect on the SC mag­net cryo­genic heat load and tem­per­a­ture. A thin amor­phous car­bon film ap­plied to the beam fac­ing cop­per sur­face will sup­press elec­tron cloud for­ma­tion. This paper dis­cusses the vac­uum re­quire­ments im­posed by the EIC hadron beams and the plans to achieve the nec­es­sary vac­uum and ther­mal sta­bil­ity that en­sure ac­cept­able beam qual­ity and life­time.
 
poster icon Poster WEPAB189 [3.321 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB189  
About • paper received ※ 17 May 2021       paper accepted ※ 25 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)