Author: Lou, W.
Paper Title Page
THPAB007 Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA 3762
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, D.C. Burke, J.A. Crittenden, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, Y. Li, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, G.J. Mahler, F. Méot, R.J. Michnoff, S. Peggs, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, New York, USA
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The Cor­nell-BNL ERL Test Ac­cel­er­a­tor (CBETA) de­vel­oped sev­eral en­ergy-sav­ing mea­sures: multi-turn en­ergy re­cov­ery, low-loss su­per­con­duct­ing ra­diofre­quency (SRF) cav­i­ties, and per­ma­nent mag­nets. With green tech­nol­ogy be­com­ing im­per­a­tive for new high-power ac­cel­er­a­tors, the lessons learned will be im­por­tant for pro­jects like the FCC-ee or new light sources, where spin­offs and lessons learned from CBETA are al­ready con­sid­ered for mod­ern de­signs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB234 Simulating Two Dimensional Coherent Synchrotron Radiation in Python 3177
 
  • W. Lou, Y. Cai, C.E. Mayes, G.R. White
    SLAC, Menlo Park, California, USA
 
  Co­her­ent Syn­chro­tron Ra­di­a­tion (CSR) in bend­ing mag­nets poses an im­por­tant limit for elec­tron beams to reach high bright­ness in novel ac­cel­er­a­tors. While the lon­gi­tu­di­nal wake­field has been well stud­ied in one-di­men­sional CSR the­ory and im­ple­mented in var­i­ous sim­u­la­tion codes, trans­verse wake­fields have re­ceived less at­ten­tion. Fol­low­ing the re­cently de­vel­oped two-di­men­sional CSR the­ory, we de­vel­oped a Python code sim­u­lat­ing the steady-state two-di­men­sional CSR ef­fects. The com­puted CSR wakes have been bench­marked with the­ory and other sim­u­la­tion codes. To speed up com­pu­ta­tion speed, the code ap­plies vec­tor­iza­tion, par­al­lel pro­cess­ing, and Numba in Python.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB234  
About • paper received ※ 20 May 2021       paper accepted ※ 01 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB217 Lightsource Unified Modeling Environment (LUME), a Start-to-End Simulation Ecosystem 4212
 
  • C.E. Mayes, A.L. Edelen, P. Fuoss, J.R. Garrahan, A. Halavanau, F. Ji, J. Krzywiński, W. Lou, N.R. Neveu, H.H. Slepicka
    SLAC, Menlo Park, California, USA
  • J.C. E, C. Fortmann-Grote
    EuXFEL, Schenefeld, Germany
  • C.M. Gulliford, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L. Gupta
    University of Chicago, Chicago, Illinois, USA
  • A. Huebl, R. Lehé
    LBNL, Berkeley, California, USA
 
  SLAC is de­vel­op­ing the Light­source Uni­fied Mod­el­ing En­vi­ron­ment (LUME) for ef­fi­cient mod­el­ing of X-ray free elec­tron laser (XFEL) per­for­mance. This pro­ject takes a holis­tic ap­proach start­ing with the sim­u­la­tion of the elec­tron beams, to the pro­duc­tion of the pho­ton pulses, to their trans­port through the op­ti­cal com­po­nents of the beam­line, to their in­ter­ac­tion with the sam­ples and the sim­u­la­tion of the de­tec­tors, and fi­nally fol­lowed by the analy­sis of sim­u­lated data. LUME lever­ages ex­ist­ing, well-es­tab­lished sim­u­la­tion codes, and pro­vides stan­dard in­ter­faces to these codes via open-source Python pack­ages. Data are ex­changed in stan­dard for­mats based on openPMD and its ex­ten­sions. The plat­form is built with an open, well-doc­u­mented ar­chi­tec­ture so that sci­ence groups around the world can con­tribute spe­cific ex­per­i­men­tal de­signs and soft­ware mod­ules, ad­vanc­ing both their sci­en­tific in­ter­ests and a broader knowl­edge of the op­por­tu­ni­ties pro­vided by the ex­cep­tional ca­pa­bil­i­ties of X-ray FELs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB217  
About • paper received ※ 20 May 2021       paper accepted ※ 20 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)