
SIMULATING TWO DIMENSIONAL COHERENT
SYNCHROTRON RADIATION IN PYTHON

W. Lou∗, C. Mayes, Y. Cai, G. White
SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Abstract
Coherent Synchrotron Radiation (CSR) in bending mag-

nets poses an important limit for electron beams to reach
high brightness in novel accelerators. While the longitu-
dinal wakefield has been well studied in one-dimensional
CSR theory and implemented in various simulation codes,
transverse wakefields have received less attention. Follow-
ing the recently developed two and three-dimensional CSR
theory, we developed a Python code simulating the 2D and
3D steady-state CSR effects. The computed CSR wakes
have been benchmarked with theory and other simulation
codes. To speed up computation speed, the code applies
vectorization, parallel processing, and Numba in Python.

INTRODUCTION
When an electron traverses a curved trajectory, syn-

chrotron radiation is emitted and can give energy kicks to the
other electrons in the same bunch. The low frequency com-
ponents of the radiation spectrum, with wavelength on the
order of the bunch length, can add coherently, and is termed
coherent synchrotron radiation (CSR). CSR can cause unde-
sired effects including increase in energy spread and beam
emittance, energy loss, and potential micro-bunching insta-
bility. For a beam with high bunch charge 𝑄 and short bunch
length 𝜎𝑧, the effects are more severe. Since the current
FACET-II chicane design at SLAC calls for extreme longi-
tudinal beam compression (𝑄 ∼ 2 nC, 𝜎𝑧 ∼ 0.5 µm at the
final bend), CSR effects are greatly concerned [1].

For fast computation, many simulation codes include only
the one-dimensional CSR model while neglecting the 2D/3D
CSR effects. The negligence is considered acceptable if the
transverse beamsizes 𝜎𝑥,𝑦 satisfy 𝜎𝑥,𝑦 ≪ 𝜎2/3

𝑧 𝜌1/3, where
𝜌 is the bending radius [2]. However in the middle of the
FACET-II chicane compressor, this limit is not satisfied, and
inclusion of the 2D/3D effects might be necessary. The
steady-state (s-s) 2D/3D CSR theory has been recently de-
veloped [3], but fast numerical calculations had not been
implemented. This paper shows how we developed code
in Python to efficiently compute the 2D/3D s-s CSR wakes
based on the theory. The benchmarking results with other
CSR codes and tracking results with the FACET-II chicane
are also presented here.

FROM THEORY TO CODE:
NUMERICAL CONVOLUTION

For simplicity we will focus on the 2D code development
first, then generalize the implementation to 3D code. The
∗ wlou@stanford.edu

s-s longitudinal and horizontal CSR wakes solved in [3] are
given as:

𝑊𝑠(𝑧, 𝑥) = ∬ 𝜓𝑠(
𝑧 − 𝑧′

2𝜌 , 𝑥 − 𝑥′)𝜕𝜆𝑏(𝑧′, 𝑥′)
𝜕𝑧′ 𝑑𝑧′𝑑𝑥′, (1)

𝑊𝑥(𝑧, 𝑥) = ∬ 𝜓𝑥(𝑧 − 𝑧′

2𝜌 , 𝑥 − 𝑥′)𝜕𝜆𝑏(𝑧′, 𝑥′)
𝜕𝑧′ 𝑑𝑧′𝑑𝑥′, (2)

in which 𝜆𝑏 is the bunch distribution, and 𝜓𝑠 and 𝜓𝑥 are
the longitudinal and horizontal potential functions solved
in terms of the relativistic 𝛾 and bending radius 𝜌. To effi-
ciently evaluate the double integrals, the trick is to apply 2D
numerical convolution. Fortunately there are many convolu-
tional methods available in Python. With a regularly-spaced
grid, the FFT convolution method can be applied, and the
codes are naturally parallelizable to allow further speed-up.

Figure 1: A typical contour plot of the longitudinal steady-
state wake 𝑊𝑠(𝑧, 𝑥) of a Gaussian bunch distribution.

The process of computing the wake is described as follows.
First, we define a 2D grid which captures all (or majority)
of the bunch particles in the (𝑧, 𝑥) space. The step sizes Δ𝑧
and Δ𝑥 are carefully chosen so that the potential functions
are well resolved while the number of particles per grid
remains reasonably large. We then apply the cloud-in-cell
(CIC) charge distribution method to compute the 𝜆𝑏 grid
and its derivative in 𝑧. Savgol filter is applied to smooth
out the distribution if necessary. The 𝜓𝑠 and 𝜓𝑥 potential
grids are computed on the double-sized grid as required by
convolution algorithm. For instance, if the 𝜆𝑏 grid is of size
(𝑁𝑧, 𝑁𝑥) = (150, 100), then the 𝜓𝑠 grid is of size (300, 200)
with the same step sizes. We then apply 2D convolution to
obtain the 𝑊𝑠 and 𝑊𝑥 wake grids. If the computed wake
grids have significant numerical noise, they are re-computed

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB234

MC5: Beam Dynamics and EM Fields

D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

WEPAB234

3177

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

with a newly defined grid. Figures 1 and 2 show respectively
𝑊𝑠 and 𝑊𝑥 wake grids of a Gaussian bunch distribution.
The on-axis longitudinal wake (𝑊𝑠(𝑥 = 0)) agrees with the
1D CSR theory. Finally, to calculate the CSR energy and
horizontal momentum kicks received by the particles (𝑑𝛿/𝑑𝑠
and 𝑑𝑥′/𝑑𝑠), numerical interpolation is applied using the
two wake grids.

Figure 2: A typical contour plot of the horizontal steady-
state wake 𝑊𝑥(𝑧, 𝑥) of a Gaussian bunch distribution.

NUMERICAL SPEED-UP
The main objective of our 2D CSR code is to compute

the wakes efficiently. Besides 2D convolution, there are
three additional methods we apply to further reduce the
computation time. The first method is to apply vectorization
instead of loops when computing the potential grids. This
means that applying a function over an array of elements
together is generally faster than applying the function on
each element individually. For instance, to compute a 2D
Gaussian distribution grid, vectorization provides ∼ 500×
speed-up for various grid sizes. The second method is to
apply parallel computation with multiple CPUs. This can be
achieved by in Python via the ProcessPoolExecutor module.
Figure 3 shows the reduction of computation time for the
𝜓𝑠 grid as the number of CPUs used increases.

Figure 3: Timings to compute the 𝜓𝑠 grid of size 2𝑁-by-2𝑁.

The third method is to apply Numba decorators on the
applicable Python functions [4]. The decorated functions are

first compiled to machine code, which allows the subsequent
calls to run at native machine code speed. Simply for the 𝜆𝑏
grid computation, Numba provides ∼ 700× speed-up. With
all methods combined, the computation time is significantly
reduced. Figure 4 shows the latest timings required for the
four main steps to compute the CSR kicks on a million
particles for different gird sizes 𝑁-by-𝑁. The characteristic
timing has been reduced to be approximately one second.

Figure 4: Timings for the four main steps to compute the
𝑊𝑠 kicks on a million particles with a 2D grid size of 𝑁-
by-𝑁. Vectorization and Numba compiler are applied with
20 CPUs on Cori NERSC.

BENCHMARKING WITH ONE BEND
The developed 2D CSR code in Python has been named

CSR2D. We have benchmarked CSR2D on one bend-
ing magnet with other CSR simulation codes, includ-
ing Bmad (1D CSR), Elegant (1D CSR), and Lucretia
MATLAB (2D CSR) [5–7]. For consistency we used
the same lattice and Gaussian beam parameters as in [2],
which are: 𝛾 = 9804, 𝜌 = 10.34 m, 𝑄/𝑒 = 6.25 × 109,
𝜎𝑧 = 20.0 µm, 𝜎𝑥 = 23.1 µm, 𝐿bend = 0.5 m. The initial
beam has 𝑁𝑝 = 106 macro-particles. Note that we assume
s-s wake inside the entire bend. Figure 5 shows the agree-
ment between the projected horizontal beam emittances as
the bunch traverses the bending magnet. The term energy
kick only means that only the longitudinal kick 𝑊𝑠 from
the 2D theory is applied. Note that this is physically dif-
ferent from 1D CSR since the off-axis wakes 𝑊𝑠(𝑥 ≠ 0)
are different, but the effects can be similar as shown. The
longitudinal phase space at different tracking steps have also
been checked (not shown here), and agreements between
the codes were observed. Similar to Fig. 5, Fig. 6 shows the
results from Python and Lucretia with both longitudinal and
horizontal kicks turned on. Overall the 1D and 2D Python
results agree with other codes well.

SLAC FACET-II CHICANE TRACKING
To find out the effects from transverse CSR wakes, We

applied CSR2D on the FACET-II chicane design lattice. The
lattice and beam parameters are: 𝐸 = 30 GeV, 𝜌 = 1538 m,

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB234

WEPAB234C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3178

MC5: Beam Dynamics and EM Fields

D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

Figure 5: Projected horizontal beam emittance of a Gaussian
bunch traversing a bend with steady-state CSR wake applied
from different codes. With “energy kick only”, only the
longitudinal kicks from the 2D CSR theory are applied.

Figure 6: Projected horizontal beam emittance of a Gaussian
bunch traversing a bend with 2D steady-state CSR wake
applied from Python and Lucretia MATLAB.

𝑄 = 2 nC, 𝜎𝑧 = 40 µm, 𝜎𝑥 = 134 µm, 𝐿bend = 20 m, and
𝐿drift = 32.5 m. The initial beam is a Gaussian with energy
chirp and 𝑁𝑝 = 106 macro-particles. Figure 7 shows the pro-
jected horizontal emittances in a log scale as the bunch tra-
verses the chicane with different CSR settings. As expected,
the final bending magnet contributes the most emittance
growth since the CSR effects scale up with a compressed
bunch length. Note that the horizontal CSR wake can con-
tribute to additional increase in the beam emittance. Figure 8
shows the longitudinal and horizontal phase space plots at
the end of chicane tracking, with either “energy kick only”
or “both kicks on”. The additional horizontal CSR wake
results in significant differences.

CODE APPLICABILITY
AND FUTURE STEPS

The existing s-s CSR2D code has been extended to
CSR3D in Python, and further incorporated into Bmad via
the OpenCSR package. All the codes are open-source on

GitHub, and are documented with examples [8–10]. As
discussed, the codes currently work with multiple CPUs
on a single node, and can be extended to multiple nodes
with mpi4py or Dask [11]. For potential further speed-up,
parts of the code currently work with GPU via the Cupy
library [12]. The next important future step for CSR2D is to
include the transient wake computation for more physically
valid tracking results. This involves computing Eq. (1) and
Eq. (2) with finite boundary conditions, and is currently in
progress.

Figure 7: Projected horizontal beam emittance of a Gaussian
bunch traversing the FACET-II chicane with 2D steady-state
CSR wake applied from Python CSR2D.

Figure 8: Longitudinal (top) and horizontal phase space
(bottom) plots at the end of chicane tracking with either
energy kick only (left) or both kicks on (right).

CONCLUSION
We have developed Python codes called CSR2D and

CSR3D to efficiently compute the 2D/3D steady-state CSR
wakes. Convolution, vectorization, multi-processing, and
Numba compiler have been applied to significantly speed up
the computation. The codes have been benchmarked with
other CSR simulation codes for a single bend, and tracking
results for the FACET-II chicane show that transverse wakes
can have significant effects on the beam.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB234

MC5: Beam Dynamics and EM Fields

D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

WEPAB234

3179

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

REFERENCES
[1] V. Yakimenko et al., “FACET-II facility for advanced acceler-

ator experimental tests”, Phys. Rev. ST Accel. Beams, vol. 22,
p. 101301, 2019. doi:10.1103/PhysRevAccelBeams.22.
101301

[2] S. Derbenev et al., “Microbunch radiative tail-head interac-
tion”, DESY, Hamburg, Germany, Rep. DESY-TESLA-FEL-
95-05, Sep. 1995.

[3] Y. Cai and Y. Ding, “Three-dimensional effects of coherent
synchrotron radiation by electrons in a bunch compressor”,
Phys. Rev. ST Accel. Beams, vol. 23, p. 014402, 2020.
doi:10.1103/PhysRevAccelBeams.23.014402

[4] Numba, http://numba.pydata.org/.

[5] D. Sagan, “Bmad: A relativistic charged particle simulation
library”, Nucl. Instrum. Meth. A, vol. 558, pp. 356–359, 2006.
doi:10.1016/j.nima.2005.11.001

[6] M. Borland, “Elegant: A Flexible SDDS-Compliant Code for
Accelerator Simulation”, Argonne National Lab, IL, USA,
Rep. LS-287, Aug. 2000.

[7] P. Tenenbaum, “Lucretia: A Matlab-Based Toolbox for the
Modeling and Simulation of Single-Pass Electron Beam
Transport Systems”, in Proc. 21st Particle Accelerator Conf.
(PAC’05), Knoxville, TN, USA, May 2005, paper FPAT086.

[8] CSR2D, https://github.com/weiyuanlou/CSR2D

[9] CSR3D, https://github.com/ChristopherMayes/
CSR3D

[10] OpenCSR, https://github.com/ChristopherMayes/
OpenCSR

[11] Dask: Scalable analytics in Python, https://dask.org/.

[12] Cupy: GPU accelerated computing with Python, https://
cupy.dev/.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB234

WEPAB234C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3180

MC5: Beam Dynamics and EM Fields

D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

