Author: Lin, Y.C.
Paper Title Page
TUPAB323 Modular Type Quick Splicing Method for TPS Beamline Radiation Shielding Hutch 2252
 
  • C.Y. Chang, C.H. Chang, S.H. Chang, C.L. Chen, Y.C. Lin, J.C. Liu, D.G. Liu, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The synchrotron light source is transported to the experimental station through a beamline with specified optics, such as mask, mirror, slit, monochromator. Generally, standard beamline should use solid materials (stainless steel, tungsten, lead, and PE) to block bremsstrahlung and synchrotron radiations, even the neutron. The radiation-shielded hutch surrounds the peripheral area of the beamline with iron and lead panels. It requires blocking the scattering radiation to protect the person against radiation hazards. A modularized radiation shielding hutch includes the frame, wall, and ceiling cover that can assemble on-site through splicing. This method could greatly shorten the installation. Besides, we designed the modular ceiling cover units with a quick mounting/opening function to easily enable the maintenance and installation of large optical components. The details of the concept design for the fixed-point radiation shielding hutch in the TPS beamline are also reported that includes the configurations of the radiation shielding wall panels, frames, and pipes/cables arrangements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB323  
About • paper received ※ 13 May 2021       paper accepted ※ 10 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB324 Real-Time Radiation Monitoring System with Interlock Protection Mechanism in Taiwan Photon Source 2256
 
  • Y.C. Lin, A.Y. Chen, C.-R. Chen, S.J. Huang, S.P. Kao, S.Y. Lin, J.C. Liu, P.J. Wen
    NSRRC, Hsinchu, Taiwan
 
  To ensure radiation safety for personnel working in the facility, the Radiation and Operation Safety Division has installed a real-time radiation monitoring system in the working area to monitor gamma rays and neutrons, for which the annual dosage limit is designed to be less than 1 mSv/year. Considering 2000 working hours for users and staff members, we have derived a control dose rate limit 2 µSv/4h for interlock protection. If the accumulated radiation dose monitored with the system exceeds 2µSv within a 4-h counting interval, the radiation monitoring station sends a signal to the interlock system to stop injection until the next counting period interval. This paper introduces the radiation monitoring system and its related design information in Taiwan Photon Source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB324  
About • paper received ※ 14 May 2021       paper accepted ※ 21 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB373 The Energy Management System in NSRRC 3585
 
  • C.S. Chen, W.S. Chan, Y.Y. Cheng, Y.F. Chiu, Y.-C. Chung, K.C. Kuo, M.T. Lee, Y.C. Lin, C.Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  Taiwan has been suffering from a shortage of natural resources for more than two decades. As stated by the Energy Statistics Handbook 2019 of Taiwan, up to 97.90% of energy supply was imported from abroad. This kind of energy consumption structure is fragile relatively. Not mention to the total domestic energy consumption annual growth rate is 1.97% in twenty years. Either the semiconductor or the integrated circuit-related industry is developed vigorously in Taiwan. All the facts cause us to face the energy problems squarely. Therefore, an energy management system (EnMS) was installed in NSRRC in 2019 to pursue more efficient energy use. With the advantages of the Archive Viewer - a utility supervisory control and data acquisition system in NSRRC, the data of energy use could be traced conveniently and widely. The model of energy use has been built to review periodically, furthermore, it provides us the accordance to replace the degraded equipment and alerts us if the failure occurs.  
poster icon Poster WEPAB373 [0.497 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB373  
About • paper received ※ 21 May 2021       paper accepted ※ 22 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB412 Use of a Noise IoT Detection System to Measure the Environmental Noise in Taiwan Light Source 3671
 
  • P.J. Wen, S.P. Kao, S.Y. Lin, Y.C. Lin
    NSRRC, Hsinchu, Taiwan
 
  In the past, the method of general noise monitoring altered little; noise was still measured with a human hand-held mobile device, or the measurement at fixed sites was made using traditional analogue data-storage equipment. In recent years, with the rapidly improved network transmission capabilities, the development of a small noise-detection IoT system allows the detection data to be transmitted wirelessly without need for human strength measurements, and records noise information. The statistics of subsequent noise data become a basis for analysis and improvement. Taiwan Light Source (TLS) beamlines have many vacuum pumps, cooling pumps, liquid-nitrogen pressure-relief systems, computer servers etc. that generate much noise. This study is expected to prepare for installation of noise detection. The system uses a noise-detection box to detect, to disclose louder locations, to collect noise data, to determine the source and type of noise source, and to provide information to reduce the noise of the working environment. The TLS noise-detection results find that the inner-ring area has less noise and are more stable than the outer ring area.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB412  
About • paper received ※ 14 May 2021       paper accepted ※ 24 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB309 New Working Tune Feedback System for TLS 4394
 
  • S.J. Huang, Y.K. Lin, Y.C. Lin
    NSRRC, Hsinchu, Taiwan
 
  TLS storage ring has two sets of working tuning feedback systems: one is used to correct the working tune deviation caused by insertion device U90; another system uses a local trim coil to correct the working tune deviation caused by all insertion devices. This article describes a new working tune feedback system in TLS that can correct the working tune effectively back to the required conditions for operation; the two existing feedback systems do not cause problems. We can both avoid increasing the local radiation dose and decreasing the injection efficiency.  
poster icon Poster THPAB309 [0.831 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB309  
About • paper received ※ 15 May 2021       paper accepted ※ 02 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)