Author: Kershaw, K.
Paper Title Page
WEPAB366 Towards the Last Stages of the CERN’s AD-Target Area Consolidation Project and Recommissioning Plans to Resume Operation 3563
 
  • C. Torregrosa, C. Ahdida, A. Bouvard, A. Broche, S. Burger, M.E.J. Butcher, M. Calviani, V. Clerc, A. De Macedo, S. De Man, F.A. Deslande, M. Di Castro, T. Dobers, T. Feniet, R. Ferriere, E. Fornasiere, R. Franqueira Ximenes, T.J. Giles, J.L. Grenard, E. Grenier-Boley, G. Gräwer, M. Guinchard, M.D. Jedrychowski, K. Kershaw, B. Lefort, E. Lopez Sola, J.M. Martin Ruiz, A. Martínez Sellés, G. Matulenaite, C.Y. Mucher, A. Newborough, M. Perez Ornedo, E. Perez-Duenas, A. Perillo-Marcone, L. Ponce, N. Solieri, M.B. Szewczyk, P.A. Thonet, M.A. Timmins, A. Tursun, W. Van den Broucke, F.M. Velotti, C. Vendeuvre, V. Vlachoudis
    CERN, Meyrin, Switzerland
  • J.C. Espadanal
    LIP, Lisboa, Portugal
 
  Antiprotons are produced at CERN at the Antiproton Decelerator (AD) Target Area by impacting 26 GeV/c proton beams onto a fixed target. Further collection, momentum selection, and transport of the secondary particles - including antiprotons - towards the AD ring is realised by a 400 kA pulsed magnetic horn and a set of magnetic dipoles and quadrupoles. A major consolidation of the area - in operation since the 80s - has taken place during the CERN Long Shutdown 2 (2019-2021). Among other activities, such upgrade included: (i) Installation of a new air-cooled target design and manufacturing of a new batch of magnetic horns, including a surface pulsing test-bench for their validation and fine-tuning (ii) Installation of a new positioning and maintenance system for the target and horn (iii) Refurbishment and decontamination of the Target Area and its equipment, (iv) Construction of a new surface service building to house new nuclear ventilation systems. This contribution presents an overview of such activities and lesson learnt. In addition, it provides the latest results from refractory metals R&D for the antiproton target and a summary of the recommissioning and optimization plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB366  
About • paper received ※ 18 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB368 Sigraflex® Studies for LHC CERN Beam Dump: Summary and Perspective 3571
 
  • J.M. Heredia, M. Calviani, R. Franqueira Ximenes, D. Grenier, K. Kershaw, A. Lechner, P. Andreu-Muñoz, F.-X. Nuiry, A. Perillo-Marcone, V. Rizzoglio, C. Torregrosa
    CERN, Meyrin, Switzerland
  • A. Alvaro
    SINTEF, Trondheim, Norway
  • F. Berto, S. Solfiti
    NTNU, Trondheim, Norway
 
  The Large Hadron Collider (LHC) beam dump (TDE) is essential for safe and reliable operation of the collider. It absorbs particles extracted from the accelerator whenever required. The original design of the TDE dates from the mid 2000 and it is constituted of an eight-meter-long cylindrical stainless-steel tube, filled with low-Z carbon-based materials from different grades and densities. The Sigraflex®, an expanded low-density graphite, is employed in the middle section of the TDE core. Due to unexpected behaviour observed in the past LHC runs, several major upgrades were recently implemented in order for the TDE to be ready for LHC Run3 (2021-2024), where up to 555 MJ beam energy is expected to be dumped every few hours. According simulations, temperatures in the Sigraflex core will reach locally up to 1500°C in the regular dump cases, and above 2300°C for failure scenarios. The objective of this contribution is to summarize the LS2 hardware upgrades and the plan for the evaluation of the Sigraflex performance during LHC Run3. This work will also detail the last experimental and numerical findings applied to the Sigraflex®, and possible alternative materials for the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB368  
About • paper received ※ 18 May 2021       paper accepted ※ 11 August 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)