Paper | Title | Page |
---|---|---|
MOPAB009 | Review of the Fixed Target Operation at RHIC in 2020 | 69 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report. |
||
Poster MOPAB009 [2.913 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 17 August 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB010 | RHIC Beam Energy Scan Operation with Electron Cooling in 2020 | 72 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam. |
||
Poster MOPAB010 [3.523 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 29 July 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB179 | Simulations of AGS Boosters Imperfection Resonances for Protons and Helions | 606 |
|
||
Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the effort to increase the polarization of the proton beam for the physics experiments at RHIC, a scan of orbit harmonic corrector strengths is performed in the Booster to ensure polarization transmission through the |G gamma|=3 and 4 imperfection resonances is optimized. These harmonic scans have been simulated using quadrupole alignment data and accurately match experimental data. The method used to simulate polarized protons is extended to polarized helions for crossing the |G gamma|=5 through |G gamma|=10 imperfection resonances and used to determine the corrector strength required to cross each resonance. |
||
Poster MOPAB179 [0.437 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB179 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 31 May 2021 issue date ※ 02 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB180 | AGS Dynamic Aperture at Injection of Polarized Protons and Helions | 610 |
|
||
Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Polarized helions are part of the physics program for the future EIC. An AC dipole has been installed in the AGS Booster to preserve polarization as helions are accelerated to |Ggamma|=10.5. Extraction from the AGS Booster at |Ggamma|=7.5 is possible but: would involve crossing an intrinsic resonance in the AGS, and would be the lowest rigidity beam injected into the AGS, and therefore experiences strong distortions of the optical functions because of the AGS two partial snakes. This lower rigidity would exacerbate the optical distortions from the snake, reducing the dynamic aperture. A comparison of the dynamic aperture of protons at Ggamma=4.5 to that of helions at |Ggamma|=7.5 and |Ggamma|=10.5 show that extraction at |Ggamma|=10.5 provides a larger dynamic aperture. This larger aperture would allow helions to be placed inside the spin tune gap generated by the two partial helices in AGS earlier in the cycle. |
||
Poster MOPAB180 [0.453 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB180 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 31 May 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |