Author: He, H.Y.
Paper Title Page
WEPAB397 Design of the Two-Layer Girder for Accelerating Tube 3636
 
  • X.J. Nie, H.Y. He, L. Kang
    IHEP, Beijing, People’s Republic of China
  • J.X. Chen, L. Liu, R.H. Liu, C.J. Ning, A.X. Wang, G.Y. Wang, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • J.B. Yu
    DNSC, Dongguan, People’s Republic of China
 
  An accelerating tube is one kind of important acceleration equipment of a linear accelerator. It is often made up of oxygen-free copper with a long tubular structure. It’s easy to suffer from deformation. Based on support requirements, the reasonable structure of the girder was obtained. Four supporting blocks were installed on the top surface of aluminum profile with the uniform distribution along the beam direction. The support strength with static condition and different working conditions were checked by ANSYS simulation calculation to ensure the stable operation of the girder. The two-layer girder can be used as a reference for other similar slender part for its simple structure and reliable support.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB397  
About • paper received ※ 14 May 2021       paper accepted ※ 01 September 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB030 Research and Development Progress of CEPC RF Shield Bellows 142
 
  • J.M. Liu, Y.H. Guan, S.M. Liu, B. Tan, P.C. Wang
    DNSC, Dongguan, People’s Republic of China
  • H. Dong, Y. Ma
    IHEP, Beijing, People’s Republic of China
  • H.Y. He, T. Huang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The circular electron positron collider (CEPC) is a candidate for the next-generation electron positron collider, which can be used to accurately measure the Higgs and electroweak bosons. The RF shield bellow is a vacuum component necessary for the construction of CEPC. Therefore, a RF shield bellow model machine with an elliptical cross-section was designed and processed for technical verification. Based on the traditional interdigital structure, a special contact force testing device was also designed to reduce measurement errors. The on-off status of the circuit was used by the device to determine whether the spring finger was pulled up, thus reducing the influences of human factors in the measurement process. It can be known from the measurement results of the model machine that the contact force of the spring finger is between 120g and 130g, which can satisfy the technical requirements.  
poster icon Poster MOPAB030 [1.467 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB030  
About • paper received ※ 19 May 2021       paper accepted ※ 20 May 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB031 Development and Operation of Vacuum System for Rapid Cycling Synchrotron to Target Beam Transfer Line of China Spallation Neutron Source 145
 
  • J.M. Liu, Y.H. Guan, S.M. Liu, B. Tan, P.C. Wang
    DNSC, Dongguan, People’s Republic of China
  • H. Dong
    IHEP, Beijing, People’s Republic of China
  • H.Y. He, T. Huang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  China Spallation Neutron Source (CSNS) is a major scientific project during the National Eleventh Five-Year Plan. It consists of a negative hydrogen ion linear accelerator, a rapid cycling synchrotron ( RCS), a linac to RCS beam transfer line (LRBT), an RCS to target beam transfer line (RTBT), and a target station. As an important part of CSNS, the RTBT connects the rapid cycling synchrotron and the target window. This paper described the design requirements, technical solutions, and operating conditions of the vacuum system for the CSNS RCS to target beam transfer line. In addition, the fast valve protection system and its verification results were also expounded. The CSNS has been in operation for over three years, during this period, the beam power has been gradually improved from 10KW to 100KW, and the vacuum system for RTBT has been operating stably.  
poster icon Poster MOPAB031 [0.581 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB031  
About • paper received ※ 19 May 2021       paper accepted ※ 24 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB299 STRUCTURAL OPTIMIZATION DESIGN OF FARADAY CUP FOR BEAM COMMISSIONING OF CSNS 943
 
  • A.X. Wang, L. Kang, M. Meng, J.L. Sun
    IHEP, Beijing, People’s Republic of China
  • J.X. Chen, H.Y. He, L. Liu, R.H. Liu, X.J. Nie, C.J. Ning, R.Y. Qiu, G.Y. Wang, T. Yang, J.B. Yu, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Faraday cup is used to absorb and stop the beam during the two phases of beam commissioning, such as the front end (FE) system and the temporary line after the drift tube linac (DTL) at the Chinese Spallation Neutron Source (CSNS). According to the beam physical parameters, graphite is selected to stop the beam directly, and oxygen-free copper which is just behind the graphite as the thermal conductive material. By the analysis and comparison of the target type and cooling efficiency, the single slant target is adopted. The incident angle between the target surface and the beam is set as 10°, meanwhile a new waterfall type water-cooling structure with parallel tunnels is designed to improve the cooling efficiency. The finite element software ANSYS is used for thermal analysis of the model, by which the diameter and interval of water cooling tunnels are optimized. The faraday cup discussed in this paper is finally successfully installed in the beam commissioning line and went well.  
poster icon Poster MOPAB299 [1.113 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB299  
About • paper received ※ 13 May 2021       paper accepted ※ 08 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB393 Study of Remote Helium Mass Spectrometer Leak Detection in Accelerator 2441
 
  • H.Y. He, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • J.M. Liu
    DNSC, Dongguan, People’s Republic of China
 
  In order to solve the problem that the vacuum system of the accelerator can’t be close to the operation for a long time, a long-distance helium mass spectrometer leak detection system is explored by studying the structure of the conventional round tube vacuum box of the vacuum system, which integrates the online vacuum leak detection, defect diagnosis and process design, improves the digital operation, realizes the accurate and effective detection of the leak location range and leak rate, and provides the technology for the remote leak detection of the vacuum system. Support.  
poster icon Poster TUPAB393 [0.666 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB393  
About • paper received ※ 13 May 2021       paper accepted ※ 31 May 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB282 Optimization Design of Four-Point Vibration Isolation Support for Spallation Neutron Source Vibration Magnet 4352
 
  • J.S. Zhang, J.X. Chen, H.Y. He, L. Liu, R.H. Liu, C.J. Ning, G.Y. Wang, A.X. Wang, J.B. Yu, Y.J. Yu, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang
    IHEP, Beijing, People’s Republic of China
 
  Chinese spallation neutron source (CSNS) RCS of the dipole magnets by 25 Hz sinusoidal alternating current (AC) with dc bias field, because the magnet will produce eddy current effect caused by the vibration, this safe and reliable operation of the long-term impact of magnets, so need to CSNS/RCS dipole magnets, a support system for dynamic characteristic research and the performance of vibration isolation design. The mechanical model of ac dipole magnet and support system is first established, and ANSYS theoretical modal analysis and experimental modal verification are carried out. On this basis, vibration isolation parameters of the four-point support system are studied. The theoretical analysis and the experimental results of modal parameters are consistent, which shows that the ANSYS analysis model is correct and reliable. The dynamic system parameter design method established in this paper can be applied to various equipment of AC power accelerator. The final experimental verification shows that the total displacement amplitude of the isolator to the Y direction of the magnet on the magnetic support decreases by 62.3%.  
poster icon Poster THPAB282 [0.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB282  
About • paper received ※ 16 May 2021       paper accepted ※ 02 September 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)