Author: Gu, X.
Paper Title Page
MOPAB003 Machine Learning Analysis of Electron Cooler Operation for RHIC 45
 
  • X. Gu, A.V. Fedotov, D. Kayran
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A re­gres­sion ma­chine learn­ing al­go­rithm was ap­plied to an­a­lyze the op­er­a­tion data of RHIC with elec­tron cooler LEReC dur­ing the 2020 physics run. After con­struct­ing a black-box sur­ro­gate model from the XG­Boost al­go­rithm and plot­ting their par­tial de­pen­dency plots for dif­fer­ent op­er­a­tion pa­ra­me­ters, we can find the ef­fects of an in­di­vid­ual pa­ra­me­ter on the RHIC lu­mi­nos­ity and op­ti­mize it ac­cord­ingly of­fline.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB003  
About • paper received ※ 14 May 2021       paper accepted ※ 25 May 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB009 Review of the Fixed Target Operation at RHIC in 2020 69
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
As part of the Beam En­ergy Scan (BES) physics pro­gram, RHIC op­er­ated in Fixed Tar­get mode at var­i­ous beam en­er­gies in 2020. The fixed tar­get ex­per­i­ment, achieved by scrap­ing the beam halo of the cir­cu­lat­ing beam on a gold ring in­serted in the beam pipe up­stream of the ex­per­i­men­tal de­tec­tors, ex­tends the range of the cen­ter-of-mass en­ergy for BES. The ma­chine con­fig­u­ra­tion, con­trol of rates, and re­sults of the fixed tar­get ex­per­i­ment op­er­a­tion in 2020 will be pre­sented in this re­port.
 
poster icon Poster MOPAB009 [2.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009  
About • paper received ※ 16 May 2021       paper accepted ※ 17 August 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB010 RHIC Beam Energy Scan Operation with Electron Cooling in 2020 72
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
RHIC pro­vided Au-Au col­li­sions at beam en­er­gies of 5.75 and 4.59 GeV/nu­cleon for the physics pro­gram in 2020 as a part of the Beam En­ergy Scan II ex­per­i­ment. The op­er­a­tional ex­pe­ri­ence at these en­er­gies will be re­ported with em­pha­sis on their unique fea­tures. These unique fea­tures in­clude the ad­di­tion of a third har­monic RF sys­tem to en­able a large lon­gi­tu­di­nal ac­cep­tance at 5.75 GeV/nu­cleon, the ap­pli­ca­tion of ad­di­tional lower fre­quency cav­i­ties for al­le­vi­at­ing space charge ef­fects, and the world-first op­er­a­tion of cool­ing with an RF-ac­cel­er­ated bunched elec­tron beam.
 
poster icon Poster MOPAB010 [3.523 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010  
About • paper received ※ 17 May 2021       paper accepted ※ 29 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB019 Possible Application of Round-to-Flat Hadron Beam Creation Using 3rd Order Coupling Resonances for the Electron-Ion Collider 99
 
  • J. Kallestrup
    PSI, Villigen PSI, Switzerland
  • X. Gu
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
An Elec­tron-Ion Col­lider (EIC) is planned to be built in Brookhaven Na­tional Lab­o­ra­tory with the con­tri­bu­tion from Jef­fer­son Na­tional Lab­o­ra­tory. To have a high lu­mi­nos­ity, both the EIC ion bunch and the EIC elec­tron bunch are de­signed to be flat dur­ing their col­li­sion. The ex­ist­ing in­jec­tor source pro­vides a round beam of width 2.5 um rad trans­verse emit­tances. In this paper we in­ves­ti­gate the op­tion of dy­nam­i­cally cross­ing the 2Qx-Qy cou­pling res­o­nance in order to cre­ate a flat-beam with emit­tance ratio Ex/Ey of up to 4. Fur­ther­more, we ex­plore the pos­si­bil­ity of using a pulsed- or AC skew sex­tu­pole mag­nets to achieve a sim­i­lar ef­fect. Using one of these meth­ods for flat beam cre­ation will help lower the ion beam cool­ing time.
 
poster icon Poster MOPAB019 [0.323 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB019  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB042 Large Radial Shifts in the EIC Hadron Storage Ring 1443
 
  • S. Peggs, J.S. Berg, K.A. Drees, X. Gu, C. Liu, H. Lovelace III, Y. Luo, G.J. Marr, A. Marusic, F. Méot, R.J. Michnoff, V. Ptitsyn, G. Robert-Demolaize, M. Valette, S. Verdú-Andrés
    BNL, Upton, New York, USA
  • K.E. Deitrick
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.R. Gamage
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron Ion Col­lider will col­lide hadrons in the Hadron Stor­age Ring (HSR) with ul­tra-rel­a­tivis­tic elec­trons in the Elec­tron Stor­age Ring. The HSR de­sign tra­jec­tory in­cludes a large ra­dial shift over a large frac­tion of its cir­cum­fer­ence, in order to ad­just the hadron path length to syn­chro­nize col­li­sions over a broad range of hadron en­er­gies. The de­sign tra­jec­tory goes on-axis through the mag­nets, crab cav­i­ties and other com­po­nents in the six HSR In­ser­tion Re­gions. This paper dis­cusses the is­sues in­volved and re­ports on past and fu­ture beam ex­per­i­ments in the Rel­a­tivis­tic Heavy Ion Col­lider, which will be up­graded to be­come the HSR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB260 A Beam Screen to Prepare the RHIC Vacuum Chamber for EIC Hadron Beams: Conceptual Design and Requirements 2066
 
  • S. Verdú-Andrés, M. Blaskiewicz, J.M. Brennan, X. Gu, R.C. Gupta, A. Hershcovitch, M. Mapes, G.T. McIntyre, J.F. Muratore, S.K. Nayak, S. Peggs, V. Ptitsyn, R. Than, J.E. Tuozzolo, D. Weiss
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­ton Ion Col­lider (EIC) hadron ring will use the ex­ist­ing Rel­a­tivis­tic Heavy Ion Col­lider stor­age rings, in­clud­ing the su­per­con­duct­ing mag­net arcs. The vac­uum cham­bers in the su­per­con­duct­ing mag­nets and the cold mass in­ter­con­nects were not de­signed for EIC beams and so must be up­dated to re­duce its re­sis­tive-wall heat­ing and to sup­press elec­tron clouds. To do so with­out com­pro­mis­ing the EIC lu­mi­nos­ity goal, a stain­less steel beam screen with co-lam­i­nated cop­per and a thin layer of amor­phous car­bon will be in­stalled. This paper de­scribes the main re­quire­ments that our so­lu­tion for the hadron ring vac­uum cham­ber needs to sat­isfy, in­clud­ing im­ped­ance, aper­ture lim­i­ta­tions, vac­uum, ther­mal and struc­tural sta­bil­ity, me­chan­i­cal de­sign, in­stal­la­tion and op­er­a­tion. The con­cep­tual de­sign of the beam screen cur­rently under de­vel­op­ment is in­tro­duced.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB260  
About • paper received ※ 19 May 2021       paper accepted ※ 25 August 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXA02 Operational Electron Cooling in the Relativistic Heavy Ion Collider 2516
 
  • A.V. Fedotov, K.A. Drees, W. Fischer, X. Gu, D. Kayran, J. Kewisch, C. Liu, K. Mernick, M.G. Minty, V. Schoefer, H. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Since the in­ven­tion of the elec­tron cool­ing tech­nique its ap­pli­ca­tion to cool hadron beams in col­lid­ers was con­sid­ered for nu­mer­ous ac­cel­er­a­tor physics pro­jects world­wide. How­ever, achiev­ing the re­quired high-bright­ness elec­tron beams of re­quired qual­ity and cool­ing of ion beams in col­li­sions was deemed to be chal­leng­ing. An elec­tron cool­ing of ion beams em­ploy­ing a high-en­ergy ap­proach with RF-ac­cel­er­ated elec­tron bunches was re­cently suc­cess­fully im­ple­mented at BNL. It was used to cool ion beams in both col­lider rings with ion beams in col­li­sion. Elec­tron cool­ing in RHIC be­came fully op­er­a­tional dur­ing the 2020 physics run and led to sub­stan­tial im­prove­ments in lu­mi­nos­ity. This pre­sen­ta­tion will dis­cuss im­ple­men­ta­tion, op­ti­miza­tion and chal­lenges of elec­tron cool­ing for col­lid­ing ion beams in RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA02  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB028 Beam-Beam Related Design Parameter Optimization for the Electron-Ion Collider 3808
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The de­sign lu­mi­nos­ity goal for the Elec­tron-Ion Col­lider (EIC) is 1e34 cm-2s−1. To achieve such a high lu­mi­nos­ity, the EIC de­sign adopts high bunch in­ten­si­ties, flat beams at the in­ter­ac­tion point (IP) with a small ver­ti­cal β*-func­tion, and a high col­li­sion fre­quency, to­gether with crab cav­i­ties to com­pen­sate the geo­met­ri­cal lu­mi­nos­ity loss due to the large cross­ing angle of 25m­rad. In this ar­ti­cle, we pre­sent our strate­gies and ap­proaches to ob­tain the de­sign lu­mi­nos­ity by op­ti­miz­ing some key beam-beam re­lated de­sign pa­ra­me­ters. Through our ex­ten­sive strong-strong and weak-strong beam-beam sim­u­la­tions, we found that beam flat­ness, elec­tron and pro­ton beam size match­ing at the IP, elec­tron and pro­ton work­ing points, and syn­chro-be­ta­tron res­o­nances aris­ing from the cross­ing angle col­li­sion play a cru­cial role in pro­ton beam size growth and lu­mi­nos­ity degra­da­tion. After op­ti­miz­ing those pa­ra­me­ters, we found a set of beam-beam re­lated de­sign pa­ra­me­ters to reach the de­sign lu­mi­nos­ity with an ac­cept­able beam-beam per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 28 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB029 Dynamic Aperture Evaluation for the Hadron Storage Ring in the Electron-Ion Collider 3812
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) is aim­ing at a de­sign lu­mi­nos­ity of 1e34 cm-2s−1. To main­tain such a high lu­mi­nos­ity, both beams in the EIC need an ac­cept­able beam life­time in the pres­ence of the beam-beam in­ter­ac­tion. For this pur­pose, we car­ried out weak-strong el­e­ment-by-el­e­ment par­ti­cle track­ing to eval­u­ate the long-term dy­namic aper­ture for the hadron ring lat­tice de­sign. We im­proved our sim­u­la­tion code Sim­Track to treat some new lat­tice de­sign fea­tures, such as ra­di­ally off­set on-mo­men­tum or­bits, co­or­di­nate trans­for­ma­tions in the in­ter­ac­tion re­gion, etc. In this ar­ti­cle, we will pre­sent the pre­lim­i­nary dy­namic aper­ture cal­cu­la­tion re­sults with β*- func­tion scan, ra­dial orbit shift, cross­ing angle col­li­sion, and mag­netic field er­rors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB029  
About • paper received ※ 17 May 2021       paper accepted ※ 01 September 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)