Author: Fraser, M.A.
Paper Title Page
MOPAB177 ELENA Commissioning and Status 598
 
  • C. Carli, M.E. Angoletta, W. Bartmann, L. Bojtár, F. Butin, B. Dupuy, Y. Dutheil, M.A. Fraser, P. Freyermuth, D. Gamba, L.V. Jørgensen, B. Lefort, O. Marqversen, M. McLean, S. Ogur, S. Pasinelli, L. Ponce, G. Tranquille
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring ELENA is a small synchrotron recently constructed and commissioned to decelerate antiprotons injected from the Antiproton Decelerator AD with a kinetic energy of 5.3 MeV down to 100 keV. Controlled deceleration in the synchrotron, equipped with an electron cooler to reduce losses and generate dense bunches, allows the experiments, typically capturing the antiprotons in traps and manipulating them further, to improve the trapping efficiency by one to two orders of magnitude. During 2018, bunches with an energy of 100 keV with parameters close to nominal have been demonstrated, and first beams have been provided to an experiment in a new experimental zone. The magnetic transfer lines from the AD to the experiments have been replaced by electrostatic lines from ELENA. Commissioning of the new transfer lines and, in parallel, studies to better understand the ring with H beams from a dedicated source, have started in autumn 2020. The first 100 keV antiproton physics run using ELENA will start in late summer 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB177  
About • paper received ※ 18 May 2021       paper accepted ※ 14 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB363 Feasibility Study for the Novel CERN PS Fast Extraction Septum 2363
 
  • T. Helseth, M.G. Atanasov, B. Balhan, J.C.C.M. Borburgh, L. Ducimetière, M.A. Fraser, T. Kramer
    CERN, Geneva, Switzerland
 
  In the framework of accelerator consolidation, a feasibility study for a novel CERN PS extraction septum has been conducted. Functional requirements have been established and, accordingly, a system of two septa magnets and their associated pulse generator is proposed. The magnetic septum design is based on eddy current topology. Magnetic simulations in Flux 2D and Opera 3D of a conceptual design have been carried out. The short length and high amplitude of the current pulse required to drive the eddy current septa imply that none of the power converters currently used for septa magnets at CERN will be suitable. Pulse generator topologies derived from kicker generators have therefore been explored and simulated in Spice. The conceptual magnet and generator design along with simulation results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB363  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB365 CERN BDF Prototype Target Operation, Removal and Autopsy Steps 3559
 
  • R. Franqueira Ximenes, O. Aberle, C. Ahdida, P. Avigni, M. Battistin, L. Bianchi, L.R. Buonocore, S. Burger, J. Busom, M. Calviani, J.P. Canhoto Espadanal, M. Casolino, M. Di Castro, M.A. Fraser, S.S. Gilardoni, S. Girod, J.L. Grenard, D. Grenier, M. Guinchard, R. Jacobsson, M. Lamont, E. Lopez Sola, A. Ortega Rolo, A. Perillo-Marcone, Y. Pira, B. Riffaud, V. Vlachoudis, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF), currently in the study phase, is a proposed general-purpose fixed target facility at CERN. Initially will host the Search for Hidden Particles (SHiP) experiment, intended to investigate the origin of dark matter and other weakly interacting particles. The BDF particle production target is located at the core of the facility and is employed to fully absorb the high intensity (400 GeV/c) Super Proton Synchrotron (SPS) beam. To validate the design of the production target, a downscaled prototype was tested with the beam at CERN in 2018 in the North Area primary area in a dedicated test at 35 kW average beam power. This contribution details the BDF prototype target operation, fully remote removal intervention, and foreseen post-irradiation examination plans.  
poster icon Poster WEPAB365 [1.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB365  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB354 Deployment and Commissioning of the CERN PS Injection Kicker System for Operation with 2 GeV Beams in Short Circuit Mode 4489
 
  • T. Kramer, N. Ayala, J.C.C.M. Borburgh, P.A.H. Burkel, E. Carlier, L. Ducimetière, L.M.C. Feliciano, A. Ferrero Colomo, M.A. Fraser, L.A. Govertsen, R. Noulibos, S. Pavis, L. Sermeus
    CERN, Geneva, Switzerland
 
  Within the framework of the LHC Injector Upgrade (LIU) project, the feasibility and design of an upgrade of the existing CERN PS proton injection kicker system have been outlined in previous publications already. This paper describes the adjustments of final design choices, testing, and deployment as well as the validation and commissioning of the new 2 GeV injection kicker system. The upgrade pays particular attention to the reduction of pulse reflections unavoidably induced by a magnet in short circuit mode configuration whilst keeping a fast 104 ns rise and fall time. An adapted thyratron triggering system to reduce jitter and enhance thyratron lifetime is outlined. Additionally, improvements to the magnet entry box and the elimination of SF6 gas in the magnet connection box and the associated pulse transmission lines are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB354  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)